|
[1]
|
Majno, G. (1991) The Ancient Riddle of Sigma Eta Psi Iota Sigma (Sepsis). The Journal of Infectious Diseases, 163, 937-945. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Singer, M., Deutschman, C.S., Seymour, C.W., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Taylor Jr., F.B., Toh, C.H., Hoots, W.K., et al. (2001) Towards Defi-nition, Clinical and Laboratory Criteria, and a Scoring System for Disseminated Intravascular Coagulation. Thrombosis and Haemostasis, 86, 1327-1330. [Google Scholar] [CrossRef]
|
|
[4]
|
Papageorgiou, C., Jourdi, G., Adjambri, E., et al. (2018) Dissemi-nated Intravascular Coagulation: An Update on Pathogenesis, Diagnosis, and Therapeutic Strategies. Clinical and Applied Thrombosis/Hemostasis, 24, 8s-28s. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Okabayashi, K., Wada, H., Ohta, S., et al. (2004) Hemostatic Markers and the Sepsis-Related Organ Failure Assessment Score in Patients with Disseminated Intravascular Coagula-tion in an Intensive Care Unit. American Journal of Hematology, 76, 225-229. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Anas, A.A., Wiersinga, W.J., de Vos, A.F., et al. (2010) Recent Insights into the Pathogenesis of Bacterial Sepsis. The Netherlands Journal of Medicine, 68, 147-152.
|
|
[7]
|
Schupp, T., Weidner, K., Rusnak, J., et al. (2022) Diagnostic and Prognostic Significance of the Prothrombin Time/ International Normalized Ratio in Sepsis and Septic Shock. Clinical and Applied Thrombosis/Hemostasis, 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Rhee, C. and Klompas, M. (2020) Sepsis Trends: Increasing In-cidence and Decreasing Mortality, or Changing Denominator? Journal of Thoracic Disease, 12, S89-s100. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Vincent, J.L., Marshall, J.C., Namendys-Silva, S.A., et al. (2014) Assessment of the Worldwide Burden of Critical Illness: The Intensive Care over Nations (ICON) Audit. The Lancet Respiratory Medicine, 2, 380-386. [Google Scholar] [CrossRef]
|
|
[10]
|
Rudd, K.E., Johnson, S.C., Agesa, K.M., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211. [Google Scholar] [CrossRef]
|
|
[11]
|
Arefian, H., Heublein, S., Scherag, A., et al. (2017) Hospi-tal-Related Cost of Sepsis: A Systematic Review. Journal of Infection, 74, 107-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Levi, M. and van der Poll, T. (2017) Coagulation and Sepsis. Thrombosis Research, 149, 38-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Manrique-Caballero, C.L., Del Rio-Pertuz, G. and Gomez, H. (2021) Sepsis-Associated Acute Kidney Injury. Critical Care Clinics, 37, 279-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wu, Z., Deng, J., Zhou, H., et al. (2022) Programmed Cell Death in Sepsis Associated Acute Kidney Injury. Frontiers in Medicine, 9, Article ID: 883028. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Liaw, P.C., Ito, T., Iba, T., et al. (2016) DAMP and DIC: The Role of Extracellular DNA and DNA-Binding Proteins in the Pathogenesis of DIC. Blood Reviews, 30, 257-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Iba, T., Ito, T., Maruyama, I., et al. (2016) Potential Diagnostic Markers for Disseminated Intravascular Coagulation of Sepsis. Blood Reviews, 30, 149-155. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Jiménez-Alcázar, M., Napirei, M., Panda, R., et al. (2015) Impaired DNase1-Mediated Degradation of Neutrophil Extracellular Traps Is Associated with Acute Thrombotic Microangiopa-thies. Journal of Thrombosis and Haemostasis, 13, 732-742. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Iba, T., Levi, M. and Levy, J.H. (2020) Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Seminars in Thrombosis and Hemostasis, 46, 89-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Mavrommatis, A.C., The-odoridis, T., Orfanidou, A., et al. (2000) Coagulation System and Platelets Are Fully Activated in Uncomplicated Sepsis. Critical Care Medicine, 28, 451-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Iba, T. and Levy, J.H. (2019) Derangement of the En-dothelial Glycocalyx in Sepsis. Journal of Thrombosis and Haemostasis, 17, 283-294. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Becker, B.F., Chappell, D., Bruegger, D., et al. (2010) Therapeutic Strategies Targeting the Endothelial Glycocalyx: Acute Deficits, but Great Potential. Cardiovascular Research, 87, 300-310. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yamakawa, K., Umemura, Y., Hayakawa, M., et al. (2016) Benefit Profile of Anticoagulant Therapy in Sepsis: A Nationwide Multicentre Registry in Japan. Critical Care, 20, 229. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Umemura, Y., Yamakawa, K., Hayakawa, M., et al. (2018) Screening Itself for Disseminated Intravascular Coagulation May Reduce Mortality in Sepsis: A Nationwide Multicenter Registry in Japan. Thrombosis Research, 161, 60-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Iba, T., Nisio, M.D., Levy, J.H., et al. (2017) New Criteria for Sepsis-Induced Coagulopathy (SIC) Following the Revised Sepsis Definition: A Retrospective Analysis of a Nationwide Survey. BMJ Open, 7, e017046. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Iba, T., Arakawa, M., Di Nisio, M., et al. (2020) Newly Pro-posed Sepsis-Induced Coagulopathy Precedes International Society on Thrombosis and Haemostasis Overt-Disseminated Intravascular Coagulation and Predicts High Mortality. Journal of Intensive Care Medicine, 35, 643-649. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yamakawa, K., Yoshimura, J., Ito, T., et al. (2019) External Val-idation of the Two Newly Proposed Criteria for Assessing Coagulopathy in Sepsis. Journal of Thrombosis and Haemo-stasis, 119, 203-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Iba, T., Levy, J.H., Warkentin, T.E., et al. (2019) Diagnosis and Management of Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Journal of Thrombosis and Haemostasis, 17, 1989-1994. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Pierrakos, C. and Vincent, J.L. (2010) Sepsis Biomarkers: A Review. Criti-cal Care, 14, R15. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wada, H., Thachil, J., Di Nisio, M., et al. (2013) Guidance for Diagnosis and Treatment of DIC from Harmonization of the Recommendations from Three Guidelines. Journal of Thrombosis and Haemostasis. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Koyama, K., Madoiwa, S., Nunomiya, S., et al. (2014) Combination of Thrombin-Antithrombin Complex, Plasminogen Activator Inhibitor-1, and Protein C Activity for Early Identification of Severe Coagulopathy in Initial Phase of Sepsis: A Prospective Observational Study. Critical Care, 18, R13. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Akahoshi, T., Kaku, N., Shono, Y., et al. (2022) Impact of Antithrombin Ac-tivity Levels Following Recombinant Antithrombin Gamma Therapy in Patients with Sepsis-Induced Disseminated In-travascular Coagulation. Clinical and Applied Thrombosis/Hemostasis, 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Huang, Z.F., Higuchi, D., Lasky, N., et al. (1997) Tissue Factor Pathway Inhibitor Gene Disruption Produces Intrauterine Lethality in Mice. Blood, 90, 944-951. [Google Scholar] [CrossRef]
|
|
[33]
|
Dong, J.F. (2005) Cleavage of Ultra-Large von Willebrand Factor by ADAMTS-13 under Flow Conditions. Journal of Thrombosis and Haemostasis, 3, 1710-1716. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Brott, D.A., Katein, A., Thomas, H., et al. (2014) Evalua-tion of von Willebrand Factor and von Willebrand Factor Propeptide in Models of Vascular Endothelial Cell Activation, Perturbation, and/or Injury. Toxicologic Pathology, 42, 672-683. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Claus, R.A., Bockmeyer, C.L., Budde, U., et al. (2009) Variations in the Ratio between von Willebrand Factor and Its Cleaving Protease during Systemic Inflammation and Association with Severity and Prognosis of Organ Failure. Journal of Thrombosis and Haemostasis, 101, 239-247. [Google Scholar] [CrossRef]
|
|
[36]
|
Andersson, U. and Tracey, K.J. (2011) HMGB1 Is a Therapeutic Tar-get for Sterile Inflammation and Infection. Annual Review of Immunology, 29, 139-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Davis, R.P., Miller-Dorey, S. and Jenne, C.N. (2016) Platelets and Coagulation in Infection. Clinical & Translational Immunology, 5, e89. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wegrzyn, G., Walborn, A., Rondina, M., et al. (2021) Biomarkers of Platelet Activation and Their Prognostic Value in Patients with Sepsis-Associated Disseminated Intravascular Coag-ulopathy. Clinical and Applied Thrombosis/Hemos- tasis, 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Walborn, A., Hoppensteadt, D., Syed, D., et al. (2018) Biomarker Profile of Sepsis-Associated Coagulopathy Using Biochip Assay for Inflammatory Cytokines. Clinical and Applied Thrombosis/Hemostasis, 24, 625-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yatabe, T., Inoue, S., Sakamoto, S., et al. (2018) The Anticoagu-lant Treatment for Sepsis Induced Disseminated Intravascular Coagulation; Network Meta-Analysis. Thrombosis Re-search, 171, 136-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Levy, J.H., Sniecinski, R.M., Welsby, I.J., et al. (2016) An-tithrombin: Anti-Inflammatory Properties and Clinical Applications. Thrombosis and Haemostasis, 115, 712-728. [Google Scholar] [CrossRef]
|
|
[42]
|
Endo, S. and Shimazaki, R. (2018) An Open-Label, Randomized, Phase 3 Study of the Efficacy and Safety of Antithrombin Gamma in Patients with Sepsis-Induced Disseminated Intra-vascular Coagulation Syndrome. Journal of Intensive Care, 6, 75. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Aikawa, N., Shimazaki, S., Yamamoto, Y., et al. (2011) Throm-bomodulin Alfa in the Treatment of Infectious Patients Complicated by Disseminated Intravascular Coagulation: Suba-nalysis from the Phase 3 Trial. Shock, 35, 349-354. [Google Scholar] [CrossRef]
|
|
[44]
|
Aoki, N., Matsuda, T., Saito, H., et al. (2002) A Compara-tive Double-Blind Randomized Trial of Activated Protein C and Unfractionated Heparin in the Treatment of Disseminated Intravascular Coagulation. International Journal of Hematology, 75, 540-547. [Google Scholar] [CrossRef]
|
|
[45]
|
Liu, X.L., Wang, X.Z., Liu, X.X., et al. (2014) Low-Dose Heparin as Treatment for Early Disseminated Intravascular Coagulation during Sepsis: A Prospective Clinical Study. Experimental and Therapeutic Medicine, 7, 604-608. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Vincent, J.L., Ramesh, M.K., Ernest, D., et al. (2013) A Randomized, Double-Blind, Placebo-Controlled, Phase 2b Study to Evaluate the Safety and Efficacy of Recombinant Human Soluble Thrombomodulin, ART-123, in Patients with Sepsis and Suspected Disseminated Intravascular Coagulation. Critical Care Medicine, 41, 2069-2079. [Google Scholar] [CrossRef]
|
|
[47]
|
Vincent, J.L., Francois, B., Zabolotskikh, I., et al. (2019) Effect of a Recombinant Human Soluble Thrombomodulin on Mortality in Patients with Sepsis-Associated Coagulopathy: The SCARLET Randomized Clinical Trial. JAMA, 321, 1993-2002. [Google Scholar] [CrossRef] [PubMed]
|