|
[1]
|
Alexander, B.M. and Cloughesy, T.F. (2017) Adult Glioblastoma. Journal of Clinical Oncology, 35, 2402-2409. [Google Scholar] [CrossRef]
|
|
[2]
|
Alifieris, C. and Trafalis, D.T. (2015) Glioblastoma Multiforme: Pathogenesis and Treatment. Pharmacology & Therapeutics, 152, 63-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Touat, M., Idbaih, A., Sanson, M. and Ligon, K.L. (2017) Glioblastoma Targeted Therapy: Updated Approaches from Recent Biological Insights. Annals of Oncology, 28, 1457-1472. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Le Rhun, E., Preusser, M., Roth, P., et al. (2019) Molec-ular Targeted Therapy of Glioblastoma. Cancer Treatment Reviews, 80, Article ID: 101896. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Luo, H., Vong, CT., Chen, H., et al. (2019) Naturally Occurring Anti-Cancer Compounds: Shining from Chinese Herbal Medicine. Chinese Medicine, 14, 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
The Gene Ontology Consortium (2019) The Gene Ontology Re-source: 20 Years and Still Going Strong. Nucleic Acids Research, 47, D330-D338. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. and Morishima, K. (2017) KEGG: New Perspectives on Genomes, Pathways, Diseases and Drugs. Nucleic Acids Research, 45, D353-D361. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Basu, A., Ash, P.E., Wolozin, B. and Emili, A. (2021) Protein Interac-tion Network Biology in Neuroscience. Proteomics, 21, e1900311. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Tang, Z., Kang, B., Li, C., Chen, T. and Zhang, Z. (2019) GEPIA2: An Enhanced Web Server for Large-Scale Expression Profiling and Interactive Analysis. Nucleic Acids Research, 47, W556-W560. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Pinzi, L. and Rastelli, G. (2019) Molecular Docking: Shift-ing Paradigms in Drug Discovery. International Journal of Molecular Sciences, 20, 4331. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ferreira, L.G., Dos Santos, R.N., Oliva, G. and Andricopulo, A.D. (2015) Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20, 13384-13421. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Omuro, A. and DeAngelis, L.M. (2013) Glioblastoma and Other Malignant Gliomas: A Clinical Review. JAMA, 310, 1842-1850. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Carlsson, S.K., Brothers, S.P. and Wahlestedt, C. (2014) Emerging Treatment Strategies for Glioblastoma Multiforme. EMBO Molecular Medicine, 6, 1359-1370. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, Y., Sharma, A., Maciaczyk, J. and Schmidt-Wolf, I.G.H. (2022) Recent Development in NKT-Based Immunotherapy of Glioblastoma: From Bench to Bedside. International Journal of Molecular Sciences, 23, 1311. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Peng, J., Liang, Q., Xu, Z., et al. (2022) Current Understanding of Ex-osomal MicroRNAs in Glioma Immune Regulation and Therapeutic Responses. Frontiers in Immunology, 12, Article ID: 813747. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Facon, T., Kumar, S., Plesner, T., et al. (2019) Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma. The New England Journal of Medicine, 380, 2104-2115. [Google Scholar] [CrossRef]
|
|
[17]
|
Siegel, D.S., Schiller, G.J., Samaras, C., et al. (2020) Pomalidomide, Dexamethasone, and Daratumumab in Relapsed Refractory Multiple Myeloma after Lenalidomide Treatment. Leukemia, 34, 3286-3297. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, J., Qi, F., Wang, Z., et al. (2020) A Review of Traditional Chinese Medicine for Treatment of Glioblastoma. BioScience Trends, 13, 476-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xiang, Y., Guo, Z., Zhu, P., Chen, J. and Huang, Y. (2019) Tradition-al Chinese Medicine as a Cancer Treatment: Modern Perspectives of Ancient but Advanced Science. Cancer Medicine, 8, 1958-1975. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Su, X.L., Wang, J.W., Che, H., et al. (2020) Clinical Application and Mechanism of Traditional Chinese Medicine in Treatment of Lung Cancer. Chinese Medical Journal (England), 133, 2987-2997. [Google Scholar] [CrossRef]
|
|
[21]
|
Yang, Z., Zhang, Q., Yu, L., et al. (2021) The Signaling Pathways and Targets of Traditional Chinese Medicine and Natural Medicine in Triple-Negative Breast Cancer. Journal of Ethnopharmacology, 264, Article ID: 113249. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Fotis, C., Antoranz, A., Hatziavramidis, D., Sakellaropoulos, T. and Alexopoulos, L.G. (2018) Network-Based Technologies for Early Drug Discovery. Drug Discovery Today, 23, 626-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tang, S.M., Deng, X.T., Zhou, J., Li, Q.P., Ge, X.X. and Miao, L. (2020) Pharmacological Basis and New Insights of Quercetin Action in Respect to Its Anti-Cancer Effects. Biomedi-cine & Pharmacotherapy, 121, Article ID: 109604. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Andres, S., Pevny, S., Ziegenhagen, R., Bakhiya, N., et al. (2018) Safety Aspects of the Use of Quercetin as a Dietary Supplement. Molecular Nutrition & Food Research, 62, Arti-cle ID: 1700447. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Eid, H.M. and Haddad, P.S. (2017) The Antidia-betic Potential of Quercetin: Underlying Mechanisms. Current Medicinal Chemistry, 24, 355-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Reyes-Farias, M. and Carrasco-Pozo, C. (2019) The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. International Journal of Molecular Sci-ences, 20, 3177. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, Z.X., Ma, J., Li, X.Y., et al. (2021) Quercetin Induces p53-Independent Cancer Cell Death through Lysosome Activation by the Transcription Factor EB and Reactive Oxygen Species-Dependent Ferroptosis. British Journal of Pharmacology, 178, 1133-1148. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Vinayak, M. and Maurya, A.K. (2019) Quercetin Loaded Nanoparticles in Targeting Cancer: Recent Development. Anti-Cancer Agents in Medicinal Chemistry, 19, 1560-1576. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Guan, X., Gao, M., Xu, H., et al. (2016) Querce-tin-Loaded Poly(lactic-co-glycolic acid)-d-α-tocopheryl Polyethylene Glycol 1000 Succinate Nanoparticles for the Tar-geted Treatment of Liver Cancer. Drug Delivery, 23, 3307-3318. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, Y., Zhao, Z.G., Luo, Y., et al. (2020) Dual Targeting of Polo-Like Kinase 1 and Baculoviral Inhibitor of Apoptosis Repeat-Containing 5 in TP53-Mutated Hepatocellular Carci-noma. World Journal of Gastroenterology, 26, 4786-4801. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, F., Ambrosini, G., Chu, E.Y., et al. (1998) Control of Apoptosis and Mitotic Spindle Checkpoint by Survivin. Nature, 396, 580-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lin, T.Y., Chan, H.H., Chen, S.H., et al. (2020) BIRC5/Survivin Is a Novel ATG12-ATG5 Conjugate Interactor and an Autopha-gy-Induced DNA Damage Suppressor in Human Cancer and Mouse Embryonic Fibroblast Cells. Autophagy, 16, 1296-1313. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Xu, L., Yu, W., Xiao, H. and Lin, K. (2021) BIRC5 Is a Prognostic Biomarker Associated with Tumor Immune Cell Infiltration. Scientific Reports, 11, Article No. 390. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ausserlechner, M.J. and Hagenbuchner, J. (2015) Mito-chondrial Survivin—An Achilles’ Heel in Cancer Chemoresistance. Molecular & Cellular Oncology, 3, e1076589. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, F., Aljahdali, I. and Ling, X. (2019) Cancer Therapeutics Using Survivin BIRC5 as a Target: What Can We Do after over Two Decades of Study? Journal of Experimental & Clinical Cancer Research, 38, 368. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Renner, G., Janouskova, H., Noulet, F., et al. (2016) Integrin α5β1 and p53 Convergent Pathways in the Control of Anti-Apoptotic Proteins PEA-15 and Survivin in High-Grade Glioma. Cell Death & Differentiation, 23, 640-653. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Frazzi, R. (2021) BIRC3 and BIRC5: Multi-Faceted Inhibitors in Cancer. Cell & Bioscience, 11, 8. [Google Scholar] [CrossRef] [PubMed]
|