|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mor-tality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ganesh, K., Stadler, Z.K., Cercek, A., et al. (2019) Immunotherapy in Col-orectal Cancer: Rationale, Challenges and Potential. Nature Reviews Gastroenterology & Hepatology, 16, 361-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Siegel, R.L., Miller, K.D., Goding Sauer, A., et al. (2020) Colo-rectal Cancer Statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 145-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Postow, M.A., Callahan, M.K. and Wolchok, J.D. (2015) Immune Check-point Blockade in Cancer Therapy. Journal of Clinical Oncology, 33, 1974-1982. [Google Scholar] [CrossRef]
|
|
[5]
|
Mcdermott, D.F. and Atkins, M.B. (2013) PD-1 as a Potential Target in Cancer Therapy. Cancer Medicine, 2, 662-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sharpe, A.H. and Pauken, K.E. (2018) The Diverse Functions of the PD1 Inhibitory Pathway. Nature Reviews Immunology, 18,153-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, G.M. (2008) Mechanisms and Functions of DNA Mismatch Repair. Cell Research, 18, 85-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Liu, S., Kong, P., Wang, X., et al. (2019) Tumor Microenvironment Clas-sification Based on T-Cell Infiltration and PD-L1 in Patients with Mismatch Repair-Proficient and -Deficient Colorectal Cancer. Oncology Letters, 17, 2335-2343. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bauer, K., Michel, S., Reuschenbach, M., et al. (2011) Dendritic Cell and Macrophage Infiltration in Microsatellite-Unstable and Microsatellite-Stable Colorectal Cancer. Familial Cancer, 10, 557-565. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Rizvi, N.A., Hellmann, M.D., Snyder, A., et al. (2015) Cancer Immunology. Mutational Landscape Determines Sensitivity to PD-1 Blockade in Non-Small Cell Lung Cancer. Science, 348, 124-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Gatalica, Z., Snyder, C., Maney, T., et al. (2014) Programmed Cell Death 1 (PD-1) and Its Ligand (PD-L1) in Common Cancers and Their Correlation with Molecular Cancer Type. Cancer Epidemiology, Biomarkers & Prevention, 23, 2965-2970. [Google Scholar] [CrossRef]
|
|
[12]
|
Le Gouvello, S., Bastuji-Garin, S., Aloulou, N., et al. (2008) High Prevalence of Foxp3 and IL17 in MMR-Proficient Colo-rectal Carcinomas. Gut, 57, 772-779. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yoshid, A.K., Okamoto, M., Sasaki, J., et al. (2020) Anti-PD-1 Antibody Decreases Tumour-Infiltrating Regulatory T Cells. BMC Cancer, 20, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Innocenti, F., Ou, F.S., Qu, X., et al. (2019) Mutational Analysis of Patients with Colorectal Cancer in CALGB/SWOG 80405 Identifies New Roles of Microsatellite Instability and Tumor Mutational Burden for Patient Outcome. Journal of Clinical Oncology, 37, 1217-1227. [Google Scholar] [CrossRef]
|
|
[15]
|
Tougeron, D., Sueur, B., Zaanan, A., et al. (2020) Prognosis and Chemosensitivity of Deficient MMR Phenotype in Patients with Metastatic Colorectal Cancer: An AGEO Retrospective Multicenter Study. International Journal of Cancer, 147, 285-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Le, D.T., Uram, J.N., Wang, H., et al. (2016) Programmed Death-1 Blockade in Mismatch Repair Deficient Colorectal Can-cer. Journal of Clinical Oncology, 34, Article 103. [Google Scholar] [CrossRef]
|
|
[17]
|
Le, D.T., Kim, T.W., Van Cutsem, E., et al. (2020) Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. Journal of Clinical Oncology, 38, 11-19. [Google Scholar] [CrossRef]
|
|
[18]
|
André, T., Shiu, K.K., Kim, T.W., et al. (2020) Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. The New England Journal of Medicine, 383, 2207-2218. [Google Scholar] [CrossRef]
|
|
[19]
|
Diaz Jr., L.A., Shiu, K.-K., Kim, T.-W., et al. (2022) Pembrolizumab versus Chemotherapy for Microsatellite Instability-High or Mismatch Repair-Deficient Metastatic Colorectal Cancer (KEYNOTE-177): Final Analysis of a Randomised, Open-Label, Phase 3 Study. The Lan-cet Oncology, 23, 659-670. [Google Scholar] [CrossRef]
|
|
[20]
|
Rotte, A. (2019) Combination of CTLA-4 and PD-1 Block-ers for Treatment of Cancer. Journal of Experimental & Clinical Cancer Research, 38, Article 255. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Overman, M.J., Mcdermott, R., Leach, J.L., et al. (2017) Nivolumab in Patients with Metastatic DNA Mismatch Repair-Deficient or Microsatellite Instability-High Colorectal Cancer (CheckMate 142): An Open-Label, Multicentre, Phase 2 Study. The Lancet Oncology, 18, 1182-1191. [Google Scholar] [CrossRef]
|
|
[22]
|
Lima, C.M.S.P.R., Yothers, G., Jacobs, S.A., et al. (2020) A Randomized Phase III Study of mFOLFOX6/Bevacizumab Combination Chemotherapy with or without Atezolizumab or Atezolizumab Monotherapy in the First-Line Treatment Of Patients (pts) with Deficient DNA Mismatch Repair (dMMR) Metastatic Colorectal Cancer (mCRC): Colorectal Cancer Metastatic dMMR Immuno-Therapy (COMMIT) Study (NRG-GI004/SWOG-S1610). Journal of Clinical Oncology, 38, TPS260. [Google Scholar] [CrossRef]
|
|
[23]
|
Taïeb, J., André, T., El Hajbi, F., et al. (2021) Avelumab versus Standard Second Line Treatment Chemotherapy in Metastatic Colorectal Cancer Patients with Mi-crosatellite Instability: The SAMCO-PRODIGE 54 Randomised Phase II trial. Digestive and Liver Disease, 53, 318-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Blank, C.U., Rozeman, E.A., Fanchi, L.F., et al. (2018) Neoadjuvant versus Adjuvant Ipilimumab plus Nivolumab in Macroscopic Stage III Melanoma. Nature Medicine, 24, 1655-1661. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Powles, T., Kockx, M., Rodriguez-Vida, A., et al. (2019) Clinical Efficacy and Biomarker Analysis of Neoadjuvant Atezolizumab in Operable Urothelial Carcinoma in the ABACUS Trial. Nature Medicine, 25, 1706-1714. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Forde, P.M., Chaft, J.E. and Pardoll, D.M. (2018) Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. The New England Journal of Medicine, 379, e14. [Google Scholar] [CrossRef]
|
|
[27]
|
Chalabi, M., Fanchi, L.F., Dijkstra, K.K., et al. (2020) Neoadjuvant Immunotherapy Leads to Pathological Responses in MMR-Proficient and MMR-Deficient Early-Stage Colon Cancers. Nature Medicine, 26, 566-576. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hu, H., Kang, L., Zhang, J., et al. (2022) Neoadjuvant PD-1 Blockade with Toripalimab, with or without Celecoxib, in Mismatch Repair-Deficient or Microsatellite Instability-High, Locally Advanced, Colorectal Cancer (PICC): A Single-Centre, Parallel-Group, Non-Comparative, Randomised, Phase 2 Trial. The Lancet Gastroenterology & Hepatology, 7, 38-48. [Google Scholar] [CrossRef]
|
|
[29]
|
Cercek, A., Lumish, M., Sinopoli, J., et al. (2022) PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. The New England Journal of Medicine, 386, 2363-2376. [Google Scholar] [CrossRef]
|
|
[30]
|
Sinicrope, F.A., Ou, F.-S., Zemla, T., et al. (2019) Randomized Trial of Standard Chemotherapy Alone or Combined with Atezolizumab as Adjuvant Therapy for Patients with Stage III Colon Cancer and Deficient Mismatch Repair (ATOMIC, Alliance A021502). Journal of Clinical Oncol-ogy, 37, e15169. [Google Scholar] [CrossRef]
|
|
[31]
|
Le, D.T., Uram, J.N., Wang, H., et al. (2015) PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. The New England Journal of Medicine, 372, 2509-2520. [Google Scholar] [CrossRef]
|
|
[32]
|
Le, D.T., Durham, J.N., Smith, K.N., et al. (2017) Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science, 357, 409-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Sade-Feldman, M., Jiao, Y.J., Chen, J.H., et al. (2017) Resistance to Checkpoint Blockade Therapy through Inactivation of Antigen Presentation. Nature Communications, 8, Article No. 1136. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Clendenning, M., Huang, A., Jayasekara, H., et al. (2018) So-matic Mutations of the Coding Microsatellites within the Beta-2-Microglobulin Gene in Mismatch Repair-Deficient Col-orectal Cancers and Adenomas. Familial Cancer, 17, 91-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Middha, S., Yaeger, R., Shia, J., et al. (2019) Majority of B2M-Mutant and -Deficient Colorectal Carcinomas Achieve Clinical Benefit from Immune Checkpoint Inhibitor Therapy and Are Microsatellite Instability-High. JCO Precision Oncology, 3, 1-14. [Google Scholar] [CrossRef]
|
|
[36]
|
Ihle, J.N. and Kerr, I.M. (1995) Jaks and STATS in Signaling by the Cytokine Receptor Superfamily. Trend in Genetics, 11, 69-74. [Google Scholar] [CrossRef]
|
|
[37]
|
Albacker, L.A., Wu, J., Smith, P., et al. (2017) Loss of Function JAK1 Mutations Occur at High Frequency in Cancers with Microsatellite Instability and Are Suggestive of Immune Evasion. PLOS ONE, 12, e0176181. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Sveen, A., Johannessen, B., Tengs, T., et al. (2017) Multilevel Genomics of Colorectal Cancers with Microsatellite Instability-Clinical Impact of JAK1 Mutations and Consensus Mo-lecular Subtype 1. Genome Medicine, 9, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kopetz, S., Andre, T., Overman, M.J., et al. (2018) Exploratory Analysis of Janus Kinase 1 (JAK1) Loss-of-Function (LoF) Mutations in Patients with DNA Mismatch Re-pair-Deficient/Microsatellite Instability-High (dMMR/MSI-H) Metastatic Colorectal Cancer (mCRC) Treated with Nivolumab + Ipilimumab in CheckMate-142. Cancer Research, 78, Article 2603. [Google Scholar] [CrossRef]
|
|
[40]
|
Malladi, S., Macalinao, D.G., Jin, X., et al. (2016) Meta-static Latency and Immune Evasion through Autocrine Inhibition of WNT. Cell, 165, 45-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gowda, P., Patrick, S., Singh, A., et al. (2018) Mutant Isocitrate Dehydrogenase 1 Disrupts PKM2-β-Catenin-BRG1 Transcriptional Network-Driven CD47 Expression. Molecular and Cellular Biology, 38, e00001-000018. [Google Scholar] [CrossRef]
|
|
[42]
|
Schürch, C.M., Forster, S., Brühl, F., et al. (2017) The “Don’t Eat Me” Signal CD47 Is a Novel Diagnostic Biomarker and Potential Therapeutic Target for Diffuse Malignant Mesothelio-ma. Oncoimmunology, 7, e1373235. [Google Scholar] [CrossRef]
|
|
[43]
|
Kukcinaviciute, E., Jonusiene, V., Sasnauskiene, A., et al. (2018) Significance of Notch and Wnt Signaling for Chemoresistance of Colorectal Cancer Cells HCT116. Journal of Cellular Biochemistry, 119, 5913-5920. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Walker, M.R., Kasprowicz, D.J., Gersuk, V.H., et al. (2003) Induction of FoxP3 and Acquisition of T Regulatory Activity by Stimulated Human CD4+CD25− T Cells. Journal of Clinical Investi-gation, 112, 1437-1443. [Google Scholar] [CrossRef]
|
|
[45]
|
Watanabe, M.A., Oda, J.M., Amarante, M.K., et al. (2010) Regulatory T Cells and Breast Cancer: Implications for Immunopathogenesis. Cancer and Metastasis Reviews, 29, 569-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Shevchenko, I., Karakhanova, S., Soltek, S., et al. (2013) Low-Dose Gemcitabine Depletes Regulatory T Cells and Improves Survival in the Orthotopic Panc02 Model of Pancre-atic Cancer. International Journal of Cancer, 133, 98-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Frey, D.M., Droeser, R.A., Viehl, C.T., et al. (2010) High Frequency of Tumor-Infiltrating FOXP3+ Regulatory T Cells Predicts Improved Survival in Mismatch Repair-Proficient Colorectal Cancer Patients. International Journal of Cancer, 126, 2635-2643. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Llosa, N.J., Cruise, M., Tam, A., et al. (2015) The Vigorous Immune Mi-croenvironment of Microsatellite Instable Colon Cancer Is Balanced by Multiple Counter-Inhibitory Checkpoints. Cancer Discovery, 5, 43-51. [Google Scholar] [CrossRef]
|
|
[49]
|
Ko, T.C., Sheng, H.M., Reisman, D., et al. (1995) Trans-forming Growth Factor-Beta 1 Inhibits Cyclin D1 Expression in Intestinal Epithelial Cells. Oncogene, 10, 177-184.
|
|
[50]
|
Chen, W., Jin, W., Hardegen, N., et al. (2003) Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-Beta Induction of Transcription Factor Foxp3. Journal of Experimental Medi-cine, 198, 1875-1886. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Mantovani, A. and Locati, M. (2013) Tu-mor-Associated Macrophages as a Paradigm of Macrophage Plasticity, Diversity, and Polarization: Lessons and Open Questions. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 1478-1483. [Google Scholar] [CrossRef]
|
|
[52]
|
Sieminska, I. and Baran, J. (2020) Myeloid-Derived Sup-pressor Cells in Colorectal Cancer. Frontiers in Immunology, 11, Article 1526. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Boissière-Michot, F., Lazennec, G., Frugier, H., et al. (2014) Characterization of an Adaptive Immune Response in Microsatellite-Instable Colorectal Cancer. Oncoimmunology, 3, e29256. [Google Scholar] [CrossRef] [PubMed]
|