|
[1]
|
原发性肝癌诊疗指南(2022年版) [J]. 中国实用外科杂志, 2022, 42(3): 241-273.
|
|
[2]
|
程敏, 张静, 曹鹏博, 等. 缺氧相关长链非编码RNA作为肝癌预后预测标志物的潜在价值[J]. 遗传, 2022, 44(2): 153-173.
|
|
[3]
|
李权, 权美玉, 张金三. Parkin调控凋亡、坏死性凋亡和焦亡的研究进展[J]. 中国细胞生物学学报, 2021, 43(12): 2433-2440.
|
|
[4]
|
胡艳红, 张凡, 张楚焌, 等. 程序性细胞死亡形式研究进展[J]. 辽宁中医药大学学报, 2018, 20(12): 85-89.
|
|
[5]
|
Mcfadden, E.J. and Hargrove, A.E. (2016) Biochemical Methods to Investigate lncRNA and the Influence of lncRNA: Protein Complexes on Chromatin. Biochemistry, 55, 1615-1630. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
张铃. 非编码RNA在肝癌发生、发展中的功能及机制研究[D]: [博士学位论文]. 重庆: 第二军医大学, 2013.
|
|
[7]
|
Huang, J.L., Zheng, L., Hu, Y.W., et al. (2014) Characteris-tics of Long Non-Coding RNA and Its Relation to Hepatocellular Carcinoma. Carcinogenesis, 35, 507-514. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Standaert, L., Adriaens, C., Radaelli, E., et al. (2014) The Long Noncoding RNA Neat1 Is Required for Mammary Gland Development and Lactation. RNA, 20, 1844-1849. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
王正. 肝细胞癌免疫相关基因的生物信息学筛选及DCK在肝细胞癌中的生物学功能研究[D]: [博士学位论文]. 济南: 山东大学, 2021.
|
|
[10]
|
Sun, Z., Jing, C., Xiao, C., et al. (2020) An Autophagy-Related Long Non-Coding RNA Prognostic Signature Accurately Predicts Survival Outcomes in Bladder Urothelial Carcinoma Patients. Aging (Albany NY), 12, 15624-15637. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Steyerberg, E.W. and Vergouwe, Y. (2014) Towards Better Clinical Prediction Models: Seven Steps for Development and an ABCD for Validation. European Heart Journal, 35, 1925-1931. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Blanche, P., Dartigues, J.F. and Jacqmin-Gadda, H. (2013) Estimat-ing and Comparing Time-Dependent Areas under Receiver Operating Characteristic Curves for Censored Event Times with Competing Risks. Statistics in Medicine, 32, 5381-5397. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Siddiqui, A. and Ceppi, P. (2020) A Non-Proliferative Role of Pyrimidine Metabolism in Cancer. Molecular Metabolism, 35, Article ID: 100962. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Gray, M.A., Stanczak, M.A., Mantuano, N.R., et al. (2020) Targeted Glycan Degradation Potentiates the Anticancer Immune Response in Vivo. Nature Chemical Biology, 16, 1376-1384. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yim, W.W. and Mizushima, N. (2020) Lysosome Bi-ology in Autophagy. Cell Discovery, 6, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Brown, J., Robusto, B., Morel, L. (2020) Intestinal Dysbiosis and Tryptophan Metabolism in Autoimmunity. Frontiers in Immunology, 11, Article No. 1741. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Pettinelli, P., Arendt, B.M., Teterina, A., et al. (2018) Altered He-patic Genes Related to Retinol Metabolism and Plasma Retinol in Patients with Non-Alcoholic Fatty Liver Disease. PLOS ONE, 13, e0205747. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Koundouros, N. and Poulogiannis, G. (2020) Reprogramming of Fatty Acid Metabolism in Cancer. British Journal of Cancer, 122, 4-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Prieto, L.I. and Baker, D.J. (2019) Cellular Senescence and the Immune System in Cancer. Gerontology, 65, 505-512. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tu, C., Santo, L., Mishima, Y., et al. (2016) Monitoring Protein Synthesis in Single Live Cancer Cells. Integrative Biology (Camb), 8, 645-653. [Google Scholar] [CrossRef]
|
|
[21]
|
Maiuri, M.C. and Maffia, P. (2021) Cellular Metabolism and Diseases. British Journal of Pharmacology, 178, 2031-2033. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
钱丽媛, 李长菲, 罗云敬, 等. 甲胎蛋白在肝癌的诊断和治疗中的研究进展[J]. 生物工程学报, 2021, 37(9): 3042-3060.
|
|
[23]
|
Cai, H., Zhang, Y., Zhang, H., et al. (2020) Prognostic Role of Tumor Mutation Burden in Hepatocellular Carcinoma after Radical Hepatectomy. Journal of Surgical Oncology, 121, 1007-1014. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Maleki Vareki, S. (2018) High and Low Mutational Burden Tumors versus Immunologically Hot and Cold Tumors and Response to Immune Checkpoint Inhibitors. The Journal for ImmunoTherapy of Cancer, 6, Article No. 157. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Liu, G.M., Zeng, H.D., Zhang, C.Y., et al. (2019) Identification of a Six-Gene Signature Predicting Overall Survival for Hepatocellular Carcinoma. Cancer Cell International, 19, Article No. 138. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
李超, 伏圣博, 刘华玲, 等. 细胞凋亡研究进展[J]. 世界科技研究与发展, 2007(3): 45-53.
|
|
[27]
|
潘少容, 曾克武, 白云. 细胞焦亡研究进展[J]. 生理科学进展, 2019, 50(2): 135-140.
|
|
[28]
|
Zhang, R., Xia, L.Q., Lu, W.W., et al. (2016) lncRNAs and Cancer. Oncology Letters, 12, 1233-1239. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, B.W., Zhou, Y., Wei, T., et al. (2021) lncRNA-POIR Promotes Epithelial-Mesenchymal Transition and Suppresses Sorafenib Sensitivity Simultaneously in Hepatocellular Carcinoma by Sponging miR-182-5p. Journal of Cellular Biochemistry, 122, 130-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Sun, Z., Xue, S., Zhang, M., et al. (2020) Aberrant NSUN2-Mediated m(5)C Modification of H19 lncRNA Is Associated with Poor Differentiation of Hepatocellular Carcinoma. Oncogene, 39, 6906-6919. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, X. and Li, N. (2018) lncRNAs on Guard. International Im-munopharmacology, 65, 60-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lou, Y., Yu, Y., Xu, X., et al. (2019) Long Non-Coding RNA LUCAT1 Promotes Tumourigenesis by Inhibiting ANXA2 Phosphorylation in Hepatocellular Carcinoma. Journal of Cellular and Molecular Medicine, 23, 1873-1884. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Liu, H.Z., Liu, G.Y., Pang, W.W., et al. (2020) lncRNA LUCAT1 Pro-motes Proliferation of Ovarian Cancer Cells by Regulating miR-199a-5p Expression. European Review for Medical and Pharmacological Sciences, 24, 1682-1687.
|
|
[34]
|
Xue, M., Tao, W., Yu, S., et al. (2020) lncRNA ZFPM2-AS1 Pro-motes Proliferation via miR-18b-5p/VMA21 Axis in Lung Adenocarcinoma. Journal of Cellular Biochemistry, 121, 313-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sun, G. and Wu, C. (2020) ZFPM2-AS1 Facilitates Cell Growth in Esophageal Squamous Cell Carcinoma via Up-Regulating TRAF4. Bioscience Reports, 40, BSR20194352. [Google Scholar] [CrossRef]
|
|
[36]
|
Wang, Y., Yang, L., Chen, T., et al. (2019) A Novel lncRNA MCM3AP-AS1 Promotes the Growth of Hepatocellular Carcinoma by Targeting miR-194-5p/FOXA1 Axis. Molecular Cancer, 18, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lan, L., Liang, Z., Zhao, Y., et al. (2020) lncRNA MCM3AP-AS1 Inhibits Cell Proliferation in Cervical Squamous Cell Carcinoma by Down-Regulating miRNA-93. Bio-science Reports, 40, BSR20193794. [Google Scholar] [CrossRef]
|
|
[38]
|
Sun, H., Wu, P., Zhang, B., et al. (2021) MCM3AP-AS1 Promotes Cisplatin Resistance in Gastric Cancer Cells via the miR-138/FOXC1 Axis. Oncology Letters, 21, Article No. 211. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chen, Q., Xu, H., Zhu, J., et al. (2020) lncRNA MCM3AP-AS1 Pro-motes Breast Cancer Progression via Modulating miR-28-5p/CENPF Axis. Biomedicine & Pharmacotherapy, 128, Arti-cle ID: 110289. [Google Scholar] [CrossRef] [PubMed]
|