学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 13 No. 2 (February 2023)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
n-李代数与 n-泊松结构
n-Lie Algebra and n-Poisson Structure
DOI:
10.12677/PM.2023.132017
,
PDF
,
HTML
,
,
被引量
作者:
李佳
:南昌航空大学数学与信息科学学院,江西 南昌
关键词:
n-泊松结构
;
n-李代数
;
n-李代数胚
;
n-Pisson Structure
;
n-Lie Algebras
;
n-Lie Algebroids
摘要:
本文从高阶角度出发,首先研究 -李代数的结构常数,它是作为李代数的自然推广,是基本乘法运算为 n- 元线性运算的一种代数系统。其次通过定义流形上的n-泊松括号引出 n-泊松结构的定义及性质,得到 n-李代数与 n-泊松结构一一对应关系。最后在向量从上研究余切从上的 n-李代数胚,给出了 n-李代数胚的余态射与 n-泊松映射的关系。
Abstract:
In this paper, we first study the structural constants of n-Lie algebras, which is a natural generalization of Lie algebras and an algebraic system whose basic multiplication operations are linear operations of n-elements. Secondly, the definition and properties of n-Poisson structure are derived by defining the n-Poisson bracket on a manifold and the one-to-one correspondence between n-Lie algebras and n-Poisson structure is obtained. Finally, we study the n-Lie algebras on cotangent bundles, and give the relation between the comorphism of n-Lie algebras and n-Poisson mapping.
文章引用:
李佳. n-李代数与 n-泊松结构[J]. 理论数学, 2023, 13(2): 149-157.
https://doi.org/10.12677/PM.2023.132017
参考文献
[1]
Filippov, T. (1985) n-Lie Algebras. Siberian Mathematical Journal, 26, 879-891.
https://doi.org/10.1007/BF00969110
[2]
Kasymov, Sh.M. (1987) On a Theory of n-Lie Algebras. Algebra and Logic, 26, 155-166.
https://doi.org/10.1007/BF02009328
[3]
Nambu, Y. (1973) Generalized Hamiltonian Dynamics. Physical Review D, 7, 2405-2412.
https://doi.org/10.1103/PhysRevD.7.2405
[4]
Takhtajan, L. (1994) On Foundation of the Generalized Nambu Mechanics. Communications in Mathematical Physics, 160, 295-315.
https://doi.org/10.1007/BF02103278
[5]
de Azcarraga, J.A. and Izquierdo, J.M. (2010) n-ary Algebras: A Review with Applications. Journal of Physics A: Mathematical and Theoretical, 43, Article ID: 293001.
[6]
Liu, Z., Weinstein, A. and Xu, P. (1997) Manin Triples for Lie Bialgebroids. Journal of Dif- ferential Geometry, 45, 547-745.
https://doi.org/10.4310/jdg/1214459842
[7]
Meinrenken, E. (2018) Poisson Geometry from a Dirac Perspective. Letters in Mathematical Physics, 108, 447-498.
[8]
Vallejo, J.A. (2001) Nambu-Poisson Manifolds and Associated n-ary Lie Algebroids. Journal of Physics A: Mathematical and General, 34, 9753.
https://doi.org/10.1088/0305-4470/34/45/501
投稿
为你推荐
友情链接
科研出版社
开放图书馆