|
[1]
|
Huang, Z., Urade, Y. and Hayaishi, O. (2007) Prostaglandins and Adenosine in the Regulation of Sleep and Wakefulness. Current Opinion in Pharmacology, 7, 33-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Saper, C.B., Roma-novsky, A.A. and Scammell, T.E. (2012) Neural Circuitry Engaged by Prostaglandins during the Sickness Syndrome. Nature Neuroscience, 15, 1088-1095. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
郭配, 李秀华, 张晓韬, 等. 伴有睡眠障碍帕金森病患者的睡眠特征及其影响因[J]. 山东大学学报(医学版), 2018, 56(4): 76-80. [Google Scholar] [CrossRef]
|
|
[4]
|
王楠, 李丽娟, 马莹莹, 等. 导致睡眠障碍内源性因素的研究进展[J]. 中国临床实用医学, 2020, 11(3): 78-80. [Google Scholar] [CrossRef]
|
|
[5]
|
Drury, A.N. and Szent-Györgyi, A. (1929) The Physiological Activity of Adenine Compounds with Especial Reference to Their Action upon the Mammalian Heart. The Journal of Physiology, 68, 213-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Haulică, I., Ababei, L., Brănişteanu, D., et al. (1973) Prelimi-nary Data on the Possible Hypnogenic Role of Adenosine. Revue Roumaine de Physiologie, 10, 275-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Eldberg, W. and Sherwood, S.L. (1954) Injections of Drugs into the Lateral Ventricle of the Cat. The Journal of Physiology, 123, 148-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Basheer, R., Strecker, R.E., Thakkar, M.M., et al. (2004) Adenosine and Sleep-Wake Regulation. Progress in Neurobiology, 73, 379-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
杨婉琪, 贾少博, 李栩琳, 等. 腺苷衍生物差向异构体YZG-330和YZG-331的中枢抑制作用比较研究[J]. 中国药理学通报, 2018, 34(6): 785-789. [Google Scholar] [CrossRef]
|
|
[10]
|
张照环, 刘振宇, 张瀚文, 等. 从受体角度研究睡眠-觉醒调控机制[J]. 中国现代神经疾病杂志, 2013, 13(5): 368-371. [Google Scholar] [CrossRef]
|
|
[11]
|
Homola, M., Pfeffer, M., Robson, S.C., et al. (2016) Melatonin Receptor Deficiency Decreases and Temporally Shifts Ecto-5’-nucleotidase mRNA Levels in Mouse Prosen-cephalon. Cell and Tissue Research, 365, 147-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Borroto-Escuela, D.O. and Fuxe, K. (2019) Adenosine Hetero-receptor Complexes in the Basal Ganglia Are Implicated in Parkinson’s Disease and Its Treatment. Journal of Neural Transmission, 126, 455-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, B., Shao, S., Aritake, K., et al. (2017) Interleukin-1β In-duces Sleep Independent of Prostaglandin D2 in Rats and Mice. Neuroscience, 340, 258-267. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
刘宽博, 王芬, 柴一秋, 等. 广义虫草类真菌来源的N6-(2-羟乙基)腺苷的研究开发现状与思考[J]. 菌物学报, 2017, 36(1): 6-13. [Google Scholar] [CrossRef]
|
|
[15]
|
聂开美, 杜思邈, 陈梅, 等. 蛹虫草N6-(2-羟乙基)腺苷与多糖组合给药对小鼠睡眠的影响[J]. 食药用菌, 2021, 29(3): 216-221.
|
|
[16]
|
Prescott, S.L., Wegienka, G., Logan, A.C., et al. (2018) Dysbiotic Drift and Biopsychosocial Medicine: How the Microbiome Links Personal, Public and Planetary Health. BioPsychoSocial Medicine, 12, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Latini, S. and Pedata, F. (2001) Adenosine in the Central Nervous System: Release Mechanisms and Extracellular Concentrations. Journal of Neurochemistry, 79, 463-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Huang, Z. (2017) Genetically Engineered Systems Re-vealed the Roles of Basal Ganglia in Sleep-Wake Regulation. Chinese Journal of Pharmacology and Toxicology, 31, 470-471.
|
|
[19]
|
Oliveira, S., Oliveira, M. and Hipolide, D.C. (2019) A1 Adenosine Receptors in the Striatum Play a Role in the Memory Impairment Caused by Sleep Deprivation through Downregulation of the PKA Pathway. Neurobiology of Learning and Memory, 160, 91-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Huang, S., Yan, J., Luo, H., et al. (2018) IL-33/ST2 Signaling Contributes to Radicular Pain by Modulating MAPK and NF-κB Activation and Inflam-matory Mediator Expression in the Spinal Cord in Rat Models of Noncompressive Lumber Disk Herniation. Journal of Neuroinflammation, 15, 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sawynok, J. and Xue, J. (2003) Adenosine in the Spinal Cord and Periphery: Release and Regulation of Pain. Progress in Neurobiology, 69, 313-340. [Google Scholar] [CrossRef]
|
|
[22]
|
Porkka-Heiskanen, T., Strecker, R.E. and McCarley, R.W. (2000) Brain Site-Specificity of Extracellular Adenosine Concentration Changes during Sleep Deprivation and Sponta-neous Sleep: An in Vivo Microdialysis Study. Neurosciences, 99, 507-517. [Google Scholar] [CrossRef]
|
|
[23]
|
Balana, B., Meiller, A., Bezin, L., et al. (2016) Altered Hy-permetabolic Response to Cortical Spreading Depolarizations after Traumatic Brain Injury in Rats. Journal of Cerebral Blood Flow & Metabolism, 37, 1670-1686. [Google Scholar] [CrossRef]
|
|
[24]
|
Peng, W., Wu, Z., Song, K., et al. (2020) Regulation of Sleep Homeostasis Mediator Adenosine by Basal Forebrain Glutamatergic Neurons. Science, 369, 1208-1212. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Fredholm, B.B., IJzerman, A.P., Jacobson, K.A., et al. (2011) Inter-national Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Recep-tors—An Update. Pharmacological Reviews, 63, 1-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Nikolic, L., Shen, W., Nobili, P., et al. (2018) Blocking TNFα-Driven Astrocyte Purinergic Signaling Restores Normal Synaptic Activity during Epileptogenesis. Glia, 66, 2673-2683. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Halassa, M.M. (2011) Thalamocortical Dynamics of Sleep: Roles of Pu-rinergic Neuromodulation. Seminars in Cell & Developmental Biology, 22, 245-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chopra, A., Patel, R.S. and Das, P. (2020) Neurobiology of Sleep and Wakefulness. In: Chopra, A., Das, P. and Doghramji, K., Eds., Management of Sleep Disorders in Psychiatry, Oxford Academic, New York. [Google Scholar] [CrossRef]
|
|
[29]
|
Radek, R.J., Decker, M.W. and Jarvis, M.F. (2004) The Adenosine Kinase Inhibitor ABT-702 Augments EEG Slow Waves in Rats. Brain Research, 1026, 74-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hayaishi, O., Urade, Y. and Huang, Z. (2011) The Role of Adenosine in the Regulation of Sleep. Current Topics in Medicinal Chemistry, 11, 1047-1057. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Mizoguchi, A., Eguchi, N., Kimura, K., et al. (2001) Dominant Localization of Prostaglandin D Receptors on Arachnoid Trabecular Cells in Mouse Basal Forebrain and Their Involve-ment in the Regulation of Non-Rapid Eye Movement Sleep. The Proceedings of the National Academy of Sciences, 98, 11674-11679. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chen, Y. and Zhang, J. (2021) How Energy Supports Our Brain to Yield Consciousness: Insights from Neuroimaging Based on the Neuroenergetics Hypothesis. Frontiers in Systems Neuroscience, 15, 648-860. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhu, X. and Chen, W. (2018) In Vivo X-Nuclear MRS Imaging Methods for Quantitative Assessment of Neuroenergetic Biomarkers in Studying Brain Function and Aging. Frontiers in Aging Neuroscience, 10, 394. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Borbély, A.A., Daan, S., Wirz-Justice, A., et al. (2016) The Two-Process Model of Sleep Regulation: A Reappraisal. Journal of Sleep Research, 25, 131-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Oishi, Y. and Lazarus, M. (2017) The Control of Sleep and Wakefulness by Mesolimbic Dopamine Systems. Neuroscience Research, 118, 66-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Mendelson, W.B. (2000) Sleep-Inducing Effects of Adenosine Microinjections into the Medial Preoptic Area Are Blocked by Flumazenil. Brain Research, 852, 479-481. [Google Scholar] [CrossRef]
|
|
[37]
|
Yang, C., Franciosi, S. and Brown, R.E. (2013) Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic, and Parvalbumin Neurons in Mice. Frontiers in Neurology, 4, 77. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Lazarus, M., Jiang, F., Huang, Z., et al. (2017) Adenosine and Sleep. Handbook of Experimental Pharmacology, Vol. 253, Springer, Berlin, 1-6.
|
|
[39]
|
Kuntze, L.B., Ferreira-Junior, N.C., Lagatta, D.C., et al. (2016) Ventral Hippocampus Modulates Bradycardic Response to Peripheral Chemoreflex Activation in Awake Rats. Experimental Physiology, 101, 482-493. [Google Scholar] [CrossRef]
|
|
[40]
|
Saper, C.B., Scammell, T.E. and Lu, J. (2005) Hypothalamic Regulation of Sleep and Circadian Rhythms. Nature, 437, 1257-1263. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Methippara, M.M., Kumar, S., Alam, M.N., et al. (2005) Effects on Sleep of Microdialysis of Adenosine A1 and A2a Receptor Ana-logs into the Lateral Preoptic Area of Rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289, R1715-R1723. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Keshavarz, M., Farrokhi, M.R. and Amiri, A. (2017) Caffeine Neuroprotective Mechanism against β-Amyloid Neurotoxicity in SHSY5Y Cell Line: In-volvement of Adenosine, Ryanodine, and N-methyl-D-aspartate Receptors. Advanced Pharmaceutical Bulletin, 7, 579-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
BeRtorelli, R., Ferri, N., Adami, M., et al. (2015) Effects of Selective Agonists and Antagonists for A1 or A2A Adenosine Receptors on Sleep-Waking Patterns in Rats. Drug Devel-opment Research, 37, 65-72. [Google Scholar] [CrossRef]
|
|
[44]
|
Domingo, C., Palomares, O., Sandham, D.A., et al. (2018) The Prostaglandin D2 Receptor 2 Pathway in Asthma: A Key Player in Airway In-flammation. Respiratory Research, 19, 189. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Sykes, D.A., Bradley, M.E., Riddy, D.M., et al. (2016) Fevipiprant (QAW039), a Slowly Dissociating CRTh2 Antagonist with the Potential for Improved Clinical Efficacy. Molecular Pharmacology, 89, 593-605. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Chazelas, B., Pepe, F., Wildi, F., et al. (2010) New Scramblers for Precision Radial Velocity: Square and Octagonal Fibers. Proceedings of SPIE, 7739, 134. [Google Scholar] [CrossRef]
|
|
[47]
|
Satoh, S., Matsumura, H., Koike, N., et al. (2010) Region-Dependent Dif-ference in the Sleep-Promoting Potency of an Adenosine A2A Receptor Agonist. European Journal of Neuroscience, 11, 1587-1597. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Scammell, T.E., Gerashchenko, D.Y., Mochizuki, T., et al. (2001) An Adenosine A2A Agonist Increases Sleep and Induces Fos in Ventrolateral Preoptic Neurons. Neuroscience, 107, 653-663. [Google Scholar] [CrossRef]
|
|
[49]
|
Wang, Y., Li, R., Wang, D., et al. (2017) Adenosine A2A Receptors in the Olfactory Bulb Suppress Rapid Eye Movement Sleep in Rodents. Brain Structure and Function, 222, 1351-1366. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Li, R., Wang, Y., Liu, W., et al. (2020) Activation of Adenosine A2A Receptors in the Olfactory Tubercle Promotes Sleep in Rodents. Neuropharmacology, 168, Article ID: 107923. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Huang, Z., Qu, W., Eguchi, N., et al. (2005) Adenosine A2A, but Not A1, Receptors Mediate the Arousal Effect of Caffeine. Nature Neuroscience, 8, 858-859. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Ferré, S., Bonaventura, J., Zhu, W., et al. (2018) Essential Control of the Function of the Striatopallidal Neuron by Pre-Coupled Complexes of Adenosine A2A-Dopamine D2 Receptor Hetero-tetramers and Adenylyl Cyclase. Frontiers in Pharmacology, 9, 243. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Lazarus, M., Shen, H., Cherasse, Y., et al. (2011) Arousal Effect of Caffeine Depends on Adenosine A2A Receptors in the Shell of the Nucleus Accumbens. Journal of Neuroscience, 31, 10067-10075. [Google Scholar] [CrossRef]
|
|
[54]
|
Bedford, J.M. (2010) Effects of Duct Ligation on the Fertilizing Ability of Spermatozoa from Different Regions of the Rabbit Epididymis. Journal of Experimental Zoology, 166, 271-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
吉赛赛, 吕跃斌, 曲英莉, 等. 中国65岁及以上老年人睡眠时长与认知功能受损的关联研究[J]. 中华预防医学杂志, 2021, 55(1): 31-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
蒋单栋, 么春艳, 肖鹏, 邹莹. 葛根提取物对小鼠免疫功能的影响[J]. 食品与营养科学, 2022, 11(4): 314-321.
|
|
[57]
|
Adamatzky, A. (2012) On Attraction of Slime Mould Physarum polycephalum to Plants with Sedative Properties. Nature Precedings, 5, 297-299.
|