|
[1]
|
Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sung, J.J., Ng, S.C., Chan, F.K., et al. (2015) An Updated Asia Pacific Consensus Recommendations on Colorectal Cancer Screening. Gut, 64, 121-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chen, W., Sun, K., Zheng, R., et al. (2018) Cancer Incidence and Mortality in China, 2014. Chinese Journal of Cancer Research, 30, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Vogelstein, B., Fearon, E.R., Hamilton, S.R., et al. (1988) Genetic Alterations during Colorectal-Tumor Development. The New England Journal of Medicine, 319, 525-532. [Google Scholar] [CrossRef]
|
|
[5]
|
中华医学会消化病学分会. 中国结直肠肿瘤综合预防共识意见(2021年, 上海) [J]. 中华消化杂志, 2021, 41(11): 726-759.
|
|
[6]
|
Cao, Y., Deng, S., Yan, L., et al. (2021) A Nomogram Based on Pretreatment Levels of Serum Bilirubin and Total Bile Acid Levels Predicts Survival in Colorectal Cancer Patients. BMC Cancer, 21, 85. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wei, T.T., Wang, L.L., Yin, J.R., et al. (2017) Relationship be-tween Red Blood Cell Distribution Width, Bilirubin, and Clinical Characteristics of Patients with Gastric Cancer. Interna-tional Journal of Laboratory Hematology, 39, 497-501. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Horsfall, L.J., Rait, G., Walters, K., et al. (2011) Serum Bilirubin and Risk of Respiratory Disease and Death. JAMA, 305, 691-697. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, X., Meng, Q.H., Ye, Y., et al. (2015) Prognostic Significance of Pretreatment Serum Levels of Albumin, LDH and Total Bilirubin in Patients with Non-Metastatic Breast Cancer. Carcinogenesis, 36, 243-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sun, H., He, B., Nie, Z., et al. (2017) A Nomogram Based on Serum Bilirubin and Albumin Levels Predicts Survival in Gastric Cancer Patients. Oncotarget, 8, 41305-41318. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, N., Xu, M., Cai, M.-Y., et al. (2015) Elevated Serum Bilirubin Levels Are Associated with Improved Survival in Patients with Curatively Resected Non-Small-Cell Lung Cancer. Can-cer Epidemiology, 39, 763-768. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zucker, S.D., Horn, P.S. and Sherman, K.E. (2004) Serum Bili-rubin Levels in the U.S. Population: Gender Effect and Inverse Correlation with Colorectal Cancer. Hepatology, 40, 827-835. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, Q., Ma, X., Xu, Q., et al. (2017) Nomograms In-corporated Serum Direct Bilirubin Level for Predicting Prognosis in Stages II and III Colorectal Cancer after Radical Re-section. Oncotarget, 8, 71138-71146. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Gao, C., Fang, L., Li, J.T. and Zhao, H.C. (2016) Significance and Prognostic Value of Increased Serum Direct Bilirubin Level for Lymph Node Metastasis in Chinese Rectal Cancer Pa-tients. World Journal of Gastroenterology, 22, 2576-2584. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gumpenberger, T., Brezina, S., Keski-Rahkonen, P., et al. (2021) Untargeted Metabolomics Reveals Major Differences in the Plasma Metabolome between Colorectal Cancer and Colo-rectal Adenomas. Metabolites, 11, 119. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yeoh, K.G., Ho, K.Y., Chiu, H.M., et al. (2011) The Asia-Pacific Colorectal Screening Score: A Validated Tool That Stratifies Risk for Colorectal Advanced Neoplasia in Asymptomatic Asian Subjects. Gut, 60, 1236-1241. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kim, S.E., Paik, H.Y., Yoon, H., et al. (2015) Sex- and Gen-der-Specific Disparities in Colorectal Cancer Risk. World Journal of Gastroenterology, 21, 5167-5175. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Keum, N. and Giovannucci, E. (2019) Global Burden of Colorectal Cancer: Emerging Trends, Risk Factors and Prevention Strategies. Nature Reviews Gastroenterology & Hepatology, 16, 713-732. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Botteri, E., Borroni, E., Sloan, E.K., et al. (2020) Smoking and Colorectal Cancer Risk, Overall and by Molecular Subtypes: A Meta-Analysis. The American Journal of Gastroenterol-ogy, 115, 1940-1949. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Figueiredo, J.C., Crockett, S.D., Snover, D.C., et al. (2015) Smoking-Associated Risks of Conventional Adenomas and Serrated Polyps in the Colorectum. Cancer Causes Control, 26, 377-386. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Soltani, G., Poursheikhani, A., Yassi, M., et al. (2019) Obesity, Diabetes and the Risk of Colorectal Adenoma and Cancer. BMC Endocrine Disorders, 19, 113. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Thanikachalam, K. and Khan, G. (2019) Colorectal Cancer and Nutrition. Nutrients, 11, 164. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Dekker, E., Tanis, P.J., Vleugels, J.L.A., et al. (2019) Colorectal Cancer. The Lancet, 394, 1467-1480. [Google Scholar] [CrossRef]
|
|
[24]
|
Lu, Y., Xin, D. and Wang, F. (2019) Predictive Significance of Preoperative Systemic Immune-Inflammation Index Determination in Postoperative Liver Metastasis of Colorectal Cancer. OncoTargets and Therapy, 12, 7791-7799. [Google Scholar] [CrossRef]
|
|
[25]
|
Kim, J.H., Cho, K.I., Kim, Y.A. and Park, S.J. (2017) Elevated Neu-trophil-to-Lymphocyte Ratio in Metabolic Syndrome Is Associated with Increased Risk of Colorectal Adenoma. Meta-bolic Syndrome and Related Disorders, 15, 393-399. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
He, Q., Du, S., Wang, X., et al. (2022) Development and Validation of a Nomogram Based on Neutrophil-to-Lymphocyte Ratio and Fibrinogen-to-Lymphocyte Ratio for Predicting Recurrence of Colorectal Adenoma. Journal of Gastrointestinal Oncology, 13, 2269-2281. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, Y., Jia, H., Yu, W., et al. (2016) Nomograms for Predicting Prognos-tic Value of Inflammatory Biomarkers in Colorectal Cancer Patients after Radical Resection. International Journal of Cancer, 139, 220-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Pine, J.K., Morris, E., Hutchins, G.G., et al. (2015) Systemic Neutro-phil-to-Lymphocyte Ratio in Colorectal Cancer: the Relationship to Patient Survival, Tumour Biology and Local Lym-phocytic Response to Tumour. British Journal of Cancer, 113, 204-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mantovani, A., Allavena, P., Sica, A. and Balkwill, F. (2008) Can-cer-Related Inflammation. Nature, 454, 436-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Condeelis, J. and Pollard, J.W. (2006) Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis. Cell, 124, 263-266. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jiraskova, A., Novotny, J., Novotny, L., et al. (2012) Association of Serum Bilirubin and Promoter Variations in HMOX1 and UGT1A1 Genes with sporadic Colorectal Cancer. Internation-al Journal of Cancer, 131, 1549-1555. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ioannou, G.N., Liou, I.W. and Weiss, N.S. (2006) Serum Bilirubin and Col-orectal Cancer Risk: A Population-Based Cohort Study. Alimentary Pharmacology & Therapeutics, 23, 1637-1642. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Carmel, R., Wong, E.T., Weiner, J.M. and Johnson, C.S. (1985) Racial Differences in Serum Total Bilirubin Levels in Health and in Disease (Pernicious Anemia). JAMA, 253, 3416-3418. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yang, L., Ge, L.-Y., Yu, T., et al. (2018) The Prognostic Impact of Serum Bilirubin in Stage IV Colorectal Cancer Patients. Journal of Clinical Laboratory Analysis, 32, e22272. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wagner, K.-H., Shiels, R.G., Lang, C.A., et al. (2018) Diagnostic Criteria and Contributors to Gilbert’s Syndrome. Critical Reviews in Clinical Laboratory Sciences, 55, 129-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Seyed Khoei, N., Jenab, M., Murphy, N., et al. (2020) Cir-culating Bilirubin Levels and Risk of Colorectal Cancer: Serological and Mendelian Randomization Analyses. BMC Medicine, 18, 229. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Vítek, L. and Ostrow, J.D. (2009) Bilirubin Chemistry and Me-tabolism; Harmful and Protective Aspects. Current Pharmaceutical Design, 15, 2869-2883. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liu, X., Cheng, D., Kuang, Q., et al. (2013) Association be-tween UGT1A1*28 Polymorphisms and Clinical Outcomes of Irinotecan-Based Chemotherapies in Colorectal Cancer: A Meta-Analysis in Caucasians. PLOS ONE, 8, e58489. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Muraca, M. and Fevery, J. (1984) Influence of Sex and Sex Steroids on Bilirubin Uridine Diphosphate-Glucuronosyl- transferase Activity of Rat Liver. Gastroenterology, 87, 308-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Bajro, M.H., Josifovski, T., Panovski, M., et al. (2012) Pro-moter Length Polymorphism in UGT1A1 and the Risk of Sporadic Colorectal Cancer. Cancer Genetics, 205, 163-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Rodrigues, C.M.P., Solá, S., Brito, M.A., et al. (2002) Bili-rubin Directly Disrupts Membrane Lipid Polarity and Fluidity, Protein Order, and Redox Status in Rat Mitochondria. Journal of Hepatology, 36, 335-341. [Google Scholar] [CrossRef]
|
|
[42]
|
Keshavan, P., Schwemberger, S.J., Smith, D.L., et al. (2004) Unconjugated Bilirubin Induces Apoptosis in Colon Cancer Cells by Triggering Mitochondrial Depolarization. Interna-tional Journal of Cancer, 112, 433-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wagner, K.-H., Wallner, M., Mölzer, C., et al. (2015) Looking to the Hori-zon: The Role of Bilirubin in the Development and Prevention of Age-Related Chronic Diseases. Clinical Science (Lon-don), 129, 1-25. [Google Scholar] [CrossRef]
|
|
[44]
|
Sedlak, T.W., Saleh, M., Higginson, D.S., et al. (2009) Bilirubin and Glutathione Have Complementary Antioxidant and Cytoprotective Roles. Proceedings of the National Academy of Sci-ences of the United States of America, 106, 5171-5176. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Rao, P., Suzuki, R., Mizobuchi, S., et al. (2006) Bilirubin Exhibits a Novel Anti-Cancer Effect on Human Adenocarcinoma. Bio-chemical and Biophysical Research Communications, 342, 1279-1283. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Deng, C.-C., Xu, M., Li, J., et al. (2016) Unconjugated Bilirubin Is a Novel Prognostic Biomarker for Nasopharyngeal Carcinoma and Inhibits Its Metastasis via Antioxidation Activity. Cancer Prevention Research (Phila), 9, 180-188. [Google Scholar] [CrossRef]
|
|
[47]
|
Ahn, B. and Ohshima, H. (2001) Suppression of Intestinal Polyposis in Apc(Min/+) Mice by Inhibiting Nitric Oxide Production. Cancer Research, 61, 8357-8360.
|
|
[48]
|
Smith, D.L., Keshavan, P., Avissar, U., et al. (2010) Sodium Taurocholate Inhibits Intestinal Adenoma Formation in APCMin/+ Mice, Potentially through activation of the Farnesoid X Receptor. Carcinogenesis, 31, 1100-1109. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Keshavan, P., Deem, T.L., Schwemberger, S.J., et al. (2005) Unconju-gated Bilirubin Inhibits VCAM-1-Mediated Transendothelial Leukocyte Migration. The Journal of Immunology, 174, 3709-3718. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wu, T.C. (2007) The Role of Vascular Cell Adhesion Mole-cule-1 in Tumor Immune Evasion. Cancer Research, 67, 6003-6006. [Google Scholar] [CrossRef]
|