|
[1]
|
Ge, Y., Zhang, R., Feng, Y., et al. (2021) Mbd2 Deficiency Alleviates Retinal Cell Apoptosisvia the miR-345-5p/Atf1 Axis in High Glucoseinjury and Streptozotocin-Induced Diabetic Mice. Molecular Therapy—Nucleic Acids, 26, 1201- 1214. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Pan, H., Wang, D. and Zhang, F. (2020) In Vitro Antimi-crobial Effect of Curcumin-Based Photodynamic Therapy on Porphyromonas gingivalis and Aggregatibacter actinomy-cetemcomitans. Photodiagnosis and Photodynamic Therapy, 32, 102055. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kolenbrander, P.E., Palmer, R.J., Rickard, A.H., et al. (2006) Bacterial Interactions and Successions during Plaque Development. Periodontology 2000, 42, 47-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Daalderop, L.A., Wieland, B.V., Tomsin, K., et al. (2018) Periodontal Disease and Pregnancy Outcomes: Overview of Systematic Reviews. JDR Clinical and Translational Re-search, 3, 10-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Singhrao, S.K., Harding, A., Poole, S., et al. (2015) Porphyromonas gingivalis Periodontal Infection and Its Putative Links with Alzheimer’s Disease. Mediators of Inflammation, 2015, Article ID: 137357. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Taubman, M.A. and Kawai, T. (2001) Involvement of T-Lymphocytes in Periodontal Disease and in Direct and Indirect Induction of Bone Resorption. Critical Reviews in Oral Biology & Medi-cine, 12, 125-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Guo, Y., Nguyen, K.A. and Potempa, J. (2000) Dichotomy of Gingipains Action as Virulence Factors: From Cleaving Substrates with the Precision of a Surgeon’s Knife to a Meat Chopper-Like Brutal Degradation of Proteins. Periodontology, 54, 15-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Olsen, I. and Potempa, J. (2014) Strategies for the Inhibi-tion of Gingipains for the Potential Treatment of Periodontitis and Associated Systemic Diseases. Journal of Oral Micro-biology, 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yamatake, K., Maeda, M., Kadowaki, T., et al. (2007) Role for Gingipains in Porphyromonas gingivalis Traffic to Phagolysosomes and Survival In Human Aortic Endothelial Cells. Infection and Immunity, 75, 2090-2100. [Google Scholar] [CrossRef]
|
|
[10]
|
Dominy, S.S., Lynch, C., Ermini, F., et al. (2019) Porphyromonas gin-givalis in Alzheimer’s Disease Brains: Evidence for Disease Causation and Treatment with Small-Molecule Inhibitors. Science Advances, 5, u3333.
|
|
[11]
|
Bostanci, N. and Belibasakis, G.N. (2012) Porphyromonas gingivalis: An Invasive and Evasive Opportunistic Oral Pathogen. FEMS Microbiology Letters, 333, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hajishengallis, G., Liang, S., Payne, M.A., et al. (2011) Low-Abundance Biofilm Species Orchestrates Inflammatory Periodontal Disease through the Commensal Microbiota and Complement. Cell Host & Microbe, 10, 497-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yoshimura, F., Murakami, Y., Nishikawa, K., et al. (2009) Sur-face Components of Porphyromonas gingivalis. Journal of Periodontal Research, 44, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Amano, A. (2003) Molecular Interaction of Porphyromo-nas gingivalis with Host Cells: Implication for the Microbial Pathogenesis of Periodontal Disease. Journal of Periodon-tology, 74, 90-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wang, P.L. and Ohura, K. (2002) Porphyromonas gingivalis Lipopolysaccharide Signaling in Gingival Fibroblasts-CD14 and Toll-Like Receptors. Critical Reviews in Oral Biology & Medicine, 13, 132-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bainbridge, B.W. and Darveau, R.P. (2001) Porphyromonas gingivalis Lipopolysaccharide: An Unusual Pattern Recognition Receptor Ligand for the Innate Host Defense System. Acta Odontologica Scandinavica, 59, 131-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Olczak, T., Simpson, W., Liu, X., et al. (2005) Iron and Heme Utilization in Porphyromonas gingivalis. FEMS Microbiology Reviews, 29, 119-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Desvarieux, M., Demmer, R.T., Rundek, T., et al. (2005) Perio-dontal Microbiota and Carotid Intima-Media Thickness: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Circulation, 111, 576-582. [Google Scholar] [CrossRef]
|
|
[19]
|
Soares, G.M., Teles, F., Starr, J.R., et al. (2015) Ef-fects of Azithromycin, Metronidazole, Amoxicillin, and Metronidazole plus Amoxicillin on an in Vitro Polymicrobial Subgingival Biofilm Model. Antimicrobial Agents and Chemotherapy, 59, 2791-2798. [Google Scholar] [CrossRef]
|
|
[20]
|
Hajishengallis, G., Darveau, R.P. and Curtis, M.A. (2012) The Key-stone-Pathogen Hypothesis. Nature Reviews Microbiology, 10, 717-725. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Anjana, R.R., Parikh, P.V., Mahla, J.K., et al. (2021) Comparative Eval-uation of Isoflurane and Sevoflurane in Avian Patients. Veterinary World, 14, 1067-1073. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Pogue, J.M., Kaye, K.S., Cohen, D.A., et al. (2015) Ap-propriate Antimicrobial Therapy in the Era of Multidrug-Resistant Human Pathogens. Clinical Microbiology and Infec-tion, 21, 302-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ben, L.A., Howell, A. and Grenier, D. (2020) Highbush Blueberry Proanthocyanidins Alleviate Porphyromonas gingivalis-Induced Deleterious Effects on Oral Mu-cosal Cells. Anaerobe, 65, Article ID: 102266. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ben, L.A., LeBel, G. and Grenier, D. (2018) Dual Action of Highbush Blueberry Proanthocyanidins on Aggregatibacter actinomycetemcomitans and the Host Inflammatory Re-sponse. BMC Complementary and Alternative Medicine, 18, 10. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hajishengallis, G. and Lamont, R.J. (2014) Breaking Bad: Manip-ulation of the Host Response by Porphyromonas gingivalis. European Journal of Immunology, 44, 328-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Tian, J., Geiss, C., Zarse, K., et al. (2021) Green Tea Catechins EGCG and ECG Enhance the Fitness and Lifespan of Caenorhabditis elegans by Complex I Inhibition. Aging (Albany NY), 13, 22629-22648. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Fernandes, F., Cukier, A., Camelier, A.A., et al. (2017) Recommenda-tions for the Pharmacological Treatment of COPD: Questions and Answers. Jornal Brasileiro de Pneumologia, 43, 290-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Moghadamtousi, S.Z., Kadir, H.A., Hassandarvish, P., et al. (2014) A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. BioMed Research International, 2014, Article ID: 186864. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ben, L.A. and Grenier, D. (2017) Black Tea Theaflavins Attenuate Por-phyromonas gingivalis Virulence Properties, Modulate Gingival Keratinocyte Tight Junction Integrity and Exert An-ti-Inflammatory Activity. Journal of Periodontal Research, 52, 458-470. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Sforcin, J.M. (2016) Biological Properties and Therapeutic Applications of Propolis. Phytotherapy Research, 30, 894-905. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Huang, S., Zhang, C.P., Wang, K., et al. (2014) Recent Advances in the Chemical Composition of Propolis. Molecules, 19, 19610-19632. [Google Scholar] [CrossRef] [PubMed]
|