|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Verma, R. and Sharma, P.C. (2020) Molecular Pathogenesis and Precision Medicine in Gastric Cancer. In: Faintuch, J. and Faintuch, S., Eds., Precision Medicine for Investigators, Practitioners and Providers, Academic Press, Cambridge, 153-165. [Google Scholar] [CrossRef]
|
|
[3]
|
Bang, Y.-J., Kim, Y.-W., et al. (2012) Adjuvant Cape-citabine and Oxaliplatin for Gastric Cancer after D2 Gastrectomy (CLASSIC): A Phase 3 Open-Label, Randomised Con-trolled Trial. Lancet, 379, 315-321. [Google Scholar] [CrossRef]
|
|
[4]
|
刘晨, 隋红. TGF-β信号通路介导胃癌EMT的研究进展[J]. 现代肿瘤医学, 2020, 28(3): 517-520.
|
|
[5]
|
Tan, I.B., Ivanova, T., Lim, K.H., et al. (2011) Intrinsic Subtypes of Gastric Cancer, Based on Gene Expression Pattern, Predict Survival and Respond Differently to Chemotherapy. Gastro-enterology, 141, 476-485. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Monti, S., Tamayo, P., Mesirov, J. and Golub, T. (2003) Con-sensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Machine Learning, 52, 91-118. [Google Scholar] [CrossRef]
|
|
[7]
|
Lei, Z., Tan, I.B., Das, K., et al. (2013) Identification of Molecular Subtypes of Gastric Cancer with Different Responses to PI3-Kinase Inhibitors and 5-Fluorouracil. Gastroenterology, 145, 554-565. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
The Cancer Genome Atlas Research Network (2014) Compre-hensive Molecular Characterization of Gastric Adenocarcinoma. Nature, 513, 202-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Böger, C., Krüger, S., Behrens, H.M., et al. (2017) Epstein-Barr Vi-rus-Associated Gastric Cancer Reveals Intratumoral Heterogeneity of PIK3CA Mutations. Annals of Oncology, 28, 1005-1014. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Derks, S., Liao, X., Chiaravalli, A.M., et al. (2016) Abundant PD-L1 Expression in Epstein-Barr Virus-Infected Gastric cancers. Oncotarget, 7, 32925-32932. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Camargo, M.C., Murphy, G., Koriyama, C., et al. (2011) Determi-nants of Epstein-Barr Virus-Positive Gastric Cancer: An International Pooled Analysis. British Journal of Cancer, 105, 38-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yanagi, A., Nishikawa, J., Shimokuri, K., et al. (2019) Clinico-pathologic Characteristics of Epstein-Barr Virus-Associated Gastric Cancer over the Past Decade in Japan. Microorgan-isms, 7, Article No. 305. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
van Beek, J., Zur Hausen, A., Klein Kranenbarg, E., et al. (2004) EBV-Positive Gastric Adenocarcinomas: A Distinct Clinicopathologic Entity with a Low Frequency of Lymph Node Involvement. Journal of Clinical Oncology, 22, 664-670. [Google Scholar] [CrossRef]
|
|
[14]
|
Bae, J.-M. and Kim, E.H. (2016) Epstein-Barr Virus and Gastric Cancer Risk: A Meta-Analysis with Meta-Regression of Case-Control Studies. Journal of Preventive Medicine and Pub-lic Health, 49, 97-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chia, N.-Y. and Tan, P. (2016) Molecular Classification of Gastric Cancer. Annals of Oncology, 27, 763-769. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Giam, M. and Rancati, G. (2015) Aneuploidy and Chromosomal In-stability in Cancer: A Jackpot to Chaos. Cell Division, 10, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Aprile, G., Giampieri, R., et al. (2014) The Challenge of Targeted Therapies for Gastric Cancer Patients: The Beginning of a Long Journey. Expert Opinion on Investigational Drugs, 23, 925-942. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cohen, R., Rousseau, B., Vidal, J., et al. (2020) Immune Checkpoint Inhibition in Colorectal Cancer: Microsatellite Instability and Beyond. Targeted Oncology, 15, 11-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cristescu, R., Lee, J., Nebozhyn, M., et al. (2015) Molecular Analysis of Gastric Cancer Identifies Subtypes Associated with Distinct Clinical Outcomes. Nature Medicine, 21, 449-456. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mori, Y., Sato, F., et al. (2002) Instabilotyping Reveals Unique Mutational Spectra in Microsatellite-Unstable Gastric Cancers. Cancer Research, 62, 3641-3645.
|
|
[21]
|
Mori, Y., Selaru, F. M., Sato, F., et al. (2003) The Impact of Microsatellite Instability on the Molecular Phenotype of Colorectal Tumors. Cancer Research, 63, 4577-4582.
|
|
[22]
|
Wang, K., Yuen, S. T., Xu, J., et al. (2014) Whole-Genome Sequencing and Comprehensive Molecular Profiling Identify New Driver Mutations in Gastric Cancer. Nature Genetics, 46, 573-582. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhu, L., Li, Z., Wang, Y., et al. (2015) Microsatellite Instability and Survival in Gastric Cancer: A Systematic Review and Meta-Analysis. Molecular and Clinical Oncology, 3, 699-705. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Van Cutsem, E., Cervantes, A., Adam, R., et al. (2016) ESMO Con-sensus Guidelines for the Management of Patients with Metastatic Colorectal Cancer. Annals of Oncology, 27, 1386-1422. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ooi, C.H., Ivanova, T., Wu, J., et al. (2009) Oncogenic Pathway Combinations Predict Clinical Prognosis in Gastric Cancer. PLoS Genetics, 5, e1000676. [Google Scholar] [CrossRef] [PubMed]
|