PLK1在恶性肿瘤中的研究进展
Recent Research Progress of PLK1 in Malignant Tumors
DOI: 10.12677/ACM.2023.132358, PDF, HTML, XML,    国家自然科学基金支持
作者: 郭 涛*, 张黎明:济宁医学院临床医学院,山东 济宁;王丽娜:济宁医学院附属医院,医学研究中心,山东 济宁;王少强#:济宁医学院附属医院,胸外科,山东 济宁
关键词: PLK1肿瘤癌症预后PLK1 Tumor Cancer Prognosis
摘要: 保罗样激酶1 (Polo-like kinase1, PLK1)属于Polo样激酶家族,是一类广泛存在于真核细胞中的丝氨酸/苏氨酸激酶,在调节细胞的有丝分裂和DNA复制中发挥重要作用。大量研究表明,PLK1在多种恶性肿瘤细胞中高表达,并与肿瘤的分期以及不良预后相关。下调PLK1的表达可抑制恶性肿瘤的进展、提高肿瘤细胞放化疗敏感性。由此可见,PLK1可能是恶性肿瘤的潜在治疗靶点。本文就PLK1的结构和功能以及在肺癌、乳腺癌等恶性肿瘤中的作用作以综述。
Abstract: PLK1 plays an important role in regulating cellular functions such as mitosis and DNA replication. Numerous studies have shown that PLK1 expression is increased in a variety of malignant tumor cells and is closely related to tumor stage and poor prognosis. Inhibiting PLK1 expression can affect the cell cycle and DNA replication to inhibit the development of malignant tumor cells and improve the sensitivity to radiotherapy. Therefore, PLK1 might be an important target for the treatment of malignant tumors. In this article, we review the structure and function of PLK1, and the close rela-tionship between PLK1 and malignant tumors such as lung cancer, breast cancer, etc.
文章引用:郭涛, 王丽娜, 张黎明, 王少强. PLK1在恶性肿瘤中的研究进展[J]. 临床医学进展, 2023, 13(2): 2536-2542. https://doi.org/10.12677/ACM.2023.132358

1. 引言

Polo样激酶(Polo-like kinases, PLK)家族是一类广泛存在于真核细胞中的丝氨酸/苏氨酸蛋白激酶(Serine threonine kinase, STK),它包括五个成员:PLK1,PLK2,PLK3,PLK4和PLK5,其中PLK1一直是人们研究的热点 [1] 。1988年,Sunkel and Glover首次在果蝇身上发现了polo基因,并阐述了它在细胞有丝分裂中的重要作用 [2] 。PLK1在细胞间期表达水平低,在G2/M期时表达最高,表达曲线呈逐渐增加趋势;而在有丝分裂完成之后,PLK1大幅度降解,蛋白表达水平也迅速下降 [3] 。细胞周期调控异常是癌症发生的一个重要原因 [4] 。PLK1过表达可改变DNA损伤检测位点、降低染色体稳定性和代谢重编程进而促进肿瘤的发生发展 [5] 。当抑制PLK1的表达时会抑制癌细胞增殖,从而影响肿瘤的进展 [6] ,同时提高肿瘤细胞的放化疗敏感性 [7] 。因此,PLK1可以作为癌症治疗的潜在靶点。本综述中,我们总结PLK1的结构与功能,以及PLK1在癌症发生发展中的作用,以期为癌症的治疗提供新思路。

2. PLK1结构与功能

2.1. PLK1的结构

PLK1基因定位于人16号染色体上p12位置,mRNA约为2.3 kb,可翻译成分子量约68 kDa的蛋白质 [8] 。PLK1的结构与其他polo激酶家族成员相似,由N端结构域和C端结构域构成。N端具有T环的Ser/Thr激酶结构域(Kinase domain, KD),该T环含有氨基酸残基Thr-210,其磷酸化与PLK1的激酶活性直接相关。C端包含两个Polo 盒(Polo box, PB)结构,PB结构是PLK家族的一个显著特征,PLK1蛋白可以通过该结构与相应蛋白的磷酸肽结合而发挥作用 [9] 。PB中间有一个磷酸肽连接区域,两者共同构成一个特征性结构域(Polo-box domain, PBD)。另外,在KD和PBD结构域中间还有一个破坏盒(Destruction box, D-box) [10] 。

2.2. PLK1的功能

PLK1在整个细胞周期中都发挥极其重要的作用,如调控细胞有丝分裂、纺锤体两极分配、微管–着丝粒附着的稳定、DNA检查点的激活以及后期染色体的正确分离等 [11] 。PLK1通过底物磷酸化促进细胞有丝分裂,调节细胞核的生成,最后在有丝分裂后期促进复合物(Anaphase promoting complex or cyclosome, APC/C)的生成,调控细胞有丝分裂结束 [9] 。PLK1在中心体的主要功能是促进g-微管蛋白的募集和中心体的成熟以及在有丝分裂末期促进微管的成核 [3] 。

3. PLK1与肿瘤的关系

3.1. PLK1与肺癌

肺癌(Lung cancer)是世界上发病率和死亡率最高的恶性肿瘤之一 [12] 。在肺癌中80%为非小细胞肺癌(Non-small cell lung carcinoma, NSCLC),其中肺腺癌(Lung adenocarcinoma, LUAD)是NSCLC中最常见的组织学类型。随着分子靶向治疗和免疫治疗的应用,部分患者的预后得到明显改善,但总体生存率仍然很低。近年来研究表明,PLK1在肺癌的发生发展中具有重要作用。PLK1可作为 LUAD潜在的预后因子,能够独立预测 LUAD的预后 [13] 。Jang等人 [14] 研究发现,在LUAD中,PLK1能够介导波形蛋白(Vimentin)磷酸化,通过转化生长因子-b (Transforming growth factor-b, TGF-b)信号通路上调细胞程序性死亡-配体1 (Programmed cell death-ligand 1, PD-L1)的表达从而促进LUAD转移以及免疫逃逸。丹参酮IIA (Tanshinone IIA, TSA)是丹参中的一种含亲脂性成分的活性化合物,在多种恶性肿瘤中都具有抑瘤作用;Li等人 [15] 研究发现,TSA通过调控极光激酶A (Aurora kinase A, AURKA)/PLK1通路进而阻滞细胞周期和诱导细胞凋亡,最终抑制LUAD进展。微小RNA (microRNA, miRNA)作为一类小型非编码RNA在细胞生长和发育过程中起多种调节作用,也可作为肿瘤抑制因子在肿瘤的进展和侵袭中发挥重要作用。miR-593-5p在NSCLC中通过直接靶向PLK1抑制细胞增殖活力 [16] 。因此,探究PLK1在肺癌发生发展中的作用机制对寻找肺癌新的治疗靶点具有重要意义。

3.2. PLK1与急性髓系白血病

急性髓系白血病(Acute myeloid leukemia, AML)是最常见的恶性血液病之一,研究AML发病的分子机制对其诊断和治疗至关重要。研究发现,PLK1在AML细胞中高表达并发挥重要作用 [17] 。锌指E-box结合同源蛋白盒2-反义RNA 1 (Zinc finger E-box binding homeobox 2-antisense RNA 1, ZEB2-AS1)通过靶向调控miR-122-5p,进而上调PLK1的表达,最终促进AML细胞的增殖、侵袭与转移 [18] 。MU等人基于蛋白水解靶向嵌合体(Proteolysis targeting chimeras, PROTACs)技术开发了降解小分子HBL-4,其可持续高效降解体内外的PLK1与溴化域4 (Bromodomain 4, BRD4),对急性白血病细胞具有抑制增殖的作用 [19] 。

3.3. PLK1与乳腺癌

乳腺癌(Breast cancer, BC)是女性最常见的恶性肿瘤,也是导致女性癌症患者死亡的第二大原因 [20] 。文献报道,PLK1在BC各个分期中高表达,且与不良预后密切相关 [21] 。Ruan等人 [22] 发现纺锤体和着丝粒相关复合体亚基3 (Spindle and kinetochore associated complex subunit 3, SKA3)能促进PLK1二聚体的产生,通过溶酶体的泛素化途径抑制PLK1的降解,上调其表达从而促进BC细胞增殖。三阴性乳腺癌(Triple negative breast cancer, TNBC)是指癌组织免疫组织化学检查孕激素受体、雌激素受体和原癌基因Her-2均为阴性的BC。Salama等人 [23] 研究发现PLK1在TNBC组织中高表达,且表达与淋巴结转移显著相关。PLK1通过调控有丝分裂,促进TNBC细胞凋亡 [24] ,表明PLK1可能是TNBC的潜在治疗靶点 [25] 。

3.4. PLK1与肝细胞癌

肝细胞癌(Hepatocellular carcinoma, HCC)是人类最常见的恶性肿瘤之一,是全球癌症死亡的第三大原因,5年生存率约为18% [26] 。文献表明,PLK1在HCC中表达显著增加,并且在HCC细胞增殖过程中发挥重要作用。敲低PLK1后可抑制细胞周期进而抑制HCC细胞的增殖;当PLK1的表达被抑制后,进入S期和G2/M期的HCC细胞数量明显增加,而进入DNA复制阶段的细胞数量骤减,并且Huh7细胞的活力也有所下降 [27] 。研究发现,上皮细胞转化序列2 (Epithelial cell transforming 2, ECT2)可上调PLK1的表达,PLK1与抑癌基因磷酸酶及张力蛋白同源物(Phosphatase and tensin homolog deleted on chromosome ten, PTEN)相互作用,促进M2型巨噬细胞极化,进而抑制NK细胞和T细胞的功能,最终促进了HCC细胞的增殖和迁移 [28] 。研究表明,组氨酸甲基转移酶(SET domain containing 3, SETD3)在HCC组织中高表达,可与PLK1启动子区结合,促进其转录,进而促进HCC的进展 [29] 。

3.5. PLK1与结直肠癌

世界卫生组织的数据显示,结直肠癌(Colorectal cancer, CRC)是人类第三大常见癌症 [30] 。在CRC中,PLK1在肿瘤组织中的表达水平高于正常组织,且表达与不良预后相关 [31] [32] 。Li等人研究发现,miRNA-875-3p在结直肠癌组织中低表达,可通过下调PLK1的表达,抑制SW480和HT29结直肠癌细胞的增殖和迁移能力,进而抑制CRC的进展 [33] 。双氢青蒿素(Dihydroartemisinin, DHA)是一种著名的抗疟疾药物,在多种肿瘤中都表现出抗肿瘤作用。细胞周期蛋白依赖性激酶1 (Cyclin dependent kinase 1, CDK1)与细胞周期蛋白B1 (CyclinB1, CCNB1)相互作用形成复合物控制G2/M期的进展,而PLK1是它们的靶基因,实验验证DHA可降低结肠上皮细胞(HCT116、DLD1和RKO)中的CDK1、CCNB1和PLK1的表达,进而抑制CRC的进展 [34] 。

4. PLK1与恶性肿瘤的放化疗

4.1. PLK1与放疗

放疗是BC的一种治疗手段,而放疗耐药与细胞自噬、活性氧(Reactive oxygen species, ROS)关系密切,Wang等人发现抑制PLK1可以降低由放疗耐药产生的ROS和自噬,以此来增强乳腺癌患者的放疗敏感性 [35] 。Reda等人在西妥昔单抗(Cetuximab)共轭纳米颗粒的基础上,开发了一种新型放疗增敏剂来治疗NSCLC,通过靶向表皮生长因子受体(Epidermal growth factor receptor, EGFR)下调PLK1的表达,进而增强放疗敏感性 [36] 。Van发现放疗前使用PLK1抑制剂预处理NSCLC细胞可检测到明显增多的G2/M期细胞和衰老细胞,间接反映了PLK1对放疗的辅助作用 [37] 。

4.2. PLK1与化疗

顺铂(Cisplatin, DDP)是肺癌最常见的化疗药物,研究发现PLK1抑制剂与DDP对NSCLC细胞具有协同抑制作用,这为DDP耐药的肺癌提供了一个新的治疗思路,但需要更多的研究来进一步验证 [38] 。Yu [39] 转录组分析显示,奥沙利铂(Oxaliplatin)可以激活与细胞周期相关的通路,可被PLK1抑制剂阻断;而PLK1的遗传和药理阻断显著增强Oxaliplatin在体内体外的敏感性。细胞分裂周期7(Cell division cycle 7, CDC7)是PLK1抑制剂和Oxaliplatin联合治疗机制的关键因素,是PLK1信号的关键下游效应因子,它是通过PLK1-MYC轴被激活;CDC7抑制剂协同增强了Oxaliplatin在CRC模型中的抗肿瘤作用,表明靶向PLK1-MYC-CDC7轴在Oxaliplatin基础化疗治疗中的潜在作用 [39] 。紫杉醇(Taxol)是前列腺癌(Prostate adenocarcinoma, PRAD)化疗的一种主要药物,但因其水溶性差、易耐药、副作用多,化疗效果不佳。Shin [40] 研究发现PLK1在紫杉醇耐药的PRAD中高表达,且对PLK1抑制剂敏感。Yu等人 [41] 研制了一种核酸适体AS1411,可以把紫杉醇和PLK1靶向siRNA运送到癌细胞内、外发挥作用,促进BC细胞凋亡。这些结果显示PLK1在紫杉醇的耐药方面的潜力。EGFR突变是LUAD的主要药物靶点,将PLK1抑制剂和EGFR抑制剂联合使用,发现紫杉醇耐药的LUAD细胞敏感性显著增加 [42] 。这些研究结果为PLK1在恶性肿瘤中的化疗作用提供了新的见解,并为临床治疗中解决化疗耐药问题提供了新的联合治疗策略。

5. 总结与展望

综上所述,恶性肿瘤严重危害人类健康,而PLK1是一个抗癌治疗中潜力巨大的靶点,也是分子靶向治疗的研究热点。目前尚不清楚PLK1过表达是引起癌症的原因还是癌细胞增殖的结果,其分子和药理机制以及关键分子相互作用网络也有待进一步研究,但已知的是PLK1是细胞周期的关键调控因子,在肿瘤的发生、发展及预后中起着重要作用。PLK1抑制剂被认为是一种具有良好前景的抗癌药物,目前已经开发出多种PLK1抑制剂并应用于癌症治疗的研究,且效果显著。我们期待更加有效、特异的PLK1抑制剂应用于恶性肿瘤的临床治疗。

基金项目

国家自然科学基金(81802290, 81800182)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Zhang, J., Zhang, L., Wang, J., et al. (2022) Polo-Like Kinase 1 Inhibitors in Human Cancer Therapy: Development and Therapeutic Potential. Journal of Medicinal Chemistry, 65, 10133-10160.
https://doi.org/10.1021/acs.jmedchem.2c00614
[2] Sunkel, C.E. and Glover, D.M. (1988) Polo, a Mitotic Mutant of Drosophila Displaying Abnormal Spindle Poles. Journal of Cell Science, 89, 25-38.
https://doi.org/10.1242/jcs.89.1.25
[3] Iliaki, S., Beyaert, R. and Afonina, I.S. (2021) Polo-Like Kinase 1 (PLK1) Signaling in Cancer and beyond. Biochemical Pharmacology, 193, Article ID: 114747.
https://doi.org/10.1016/j.bcp.2021.114747
[4] Jimeno, A., Li, J., Messersmith, W.A., et al. (2008) Phase I Study of ON 01910.Na, a Novel Modulator of the Polo-Like Kinase 1 Pathway, in Adult Patients with Solid Tumors. Journal of Clinical Oncology, 26, 5504-5510.
https://doi.org/10.1200/JCO.2008.17.9788
[5] Gheghiani, L., Wang, L., Zhang, Y., et al. (2021) PLK1 Induces Chromosomal Instability and Overrides Cell-Cycle Checkpoints to Drive Tumorigenesis. Cancer Research, 81, 1293-1307.
https://doi.org/10.1158/0008-5472.CAN-20-1377
[6] Cirillo, L., Thomas, Y., Pintard, L., et al. (2016) BORA-Dependent PLK1 Regulation: A New Weapon for Cancer Therapy? Molecular & Cellular Oncology, 3, e1199265.
https://doi.org/10.1080/23723556.2016.1199265
[7] Gutteridge, R.E., Ndiaye, M.A., Liu, X., et al. (2016) Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Molecular Cancer Therapeutics, 15, 1427-1435.
https://doi.org/10.1158/1535-7163.MCT-15-0897
[8] Golsteyn, R.M., Schultz, S.J., Bartek, J., et al. (1994) Cell Cycle Analysis and Chromosomal Localization of Human PLK1, a Putative Homologue of the Mitotic Kinases Drosoph-ila Polo and Saccharomyces cerevisiae CDC5. Journal of Cell Science, 107, 1509-1517.
https://doi.org/10.1242/jcs.107.6.1509
[9] Liu, Z., Sun, Q. and Wang, X. (2017) PLK1, A Potential Target for Cancer Therapy. Translational Oncology, 10, 22-32.
https://doi.org/10.1016/j.tranon.2016.10.003
[10] Chiappa, M., Petrella, S., Damia, G., et al. (2022) Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Frontiers in Oncology, 12, Article ID: 903016.
https://doi.org/10.3389/fonc.2022.903016
[11] Li, M., Liu, Z. and Wang, X. (2018) Exploration of the Combina-tion of PLK1 Inhibition with Immunotherapy in Cancer Treatment. Journal of Oncology, 2018, Article ID: 3979527.
https://doi.org/10.1155/2018/3979527
[12] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[13] Wang, L., Gao, M., Sun, D., et al. (2022) PLK1 Is a Potential Prognostic Factor Associated with the Tumor Microenvironment in Lung Adenocarcinoma. BioMed Research International, 2022, Article ID: 7848771.
https://doi.org/10.1155/2022/7848771
[14] Jang, H.-R., Shin, S.-B., Kim, C.-H., et al. (2021) PLK1/Vimentin Signaling Facilitates Immune Escape by Recruiting Smad2/3 to PD-L1 Promoter in Metastatic Lung Adenocarcinoma. Cell Death & Differentiation, 28, 2745-2764.
https://doi.org/10.1038/s41418-021-00781-4
[15] Li, Z., Zhang, Y., Zhou, Y., et al. (2021) Tanshinone IIA Sup-presses the Progression of Lung Adenocarcinoma through Regulating CCNA2-CDK2 Complex and AURKA/PLK1 Pathway. Scientific Reports, 11, Article No. 23681.
https://doi.org/10.1038/s41598-021-03166-2
[16] Yan, L., Zhang, Y., Li, K., et al. (2020) miR-593-5p Inhibit Cell Proliferation by Targeting PLK1 in Non Small Cell Lung Cancer Cells. Pathology Research and Practice, 216, Article ID: 152786.
https://doi.org/10.1016/j.prp.2019.152786
[17] Chakraborty, S. and Park, C.Y. (2022) Pathogenic Mechanisms in Acute Myeloid Leukemia. Current Treatment Options in Oncology, 23, 1522-1534.
https://doi.org/10.1007/s11864-022-01021-8
[18] Guan, J., Liu, P., Wang, A., et al. (2020) Long Noncoding RNA ZEB2AS1 Affects Cell Proliferation and Apoptosis via the miR1225p/PLK1 Axis in Acute Myeloid Leukemia. Interna-tional Journal of Molecular Medicine, 46, 1490-1500.
https://doi.org/10.3892/ijmm.2020.4683
[19] Mu, X., Bai, L., Xu, Y., et al. (2020) Protein Targeting Chimeric Molecules Specific for Dual Bromodomain 4 (BRD4) and Polo-Like Kinase 1 (PLK1) Proteins in Acute Myeloid Leu-kemia Cells. Biochemical and Biophysical Research Communications, 521, 833-839.
https://doi.org/10.1016/j.bbrc.2019.11.007
[20] Siegel, R.L., Miller, K.D., Fuchs, H.E., et al. (2022) Cancer Statis-tics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[21] Fang, L., Liu, Q., Cui, H., et al. (2022) Bioinformatics Analysis Highlight Differentially Expressed CCNB1 and PLK1 Genes as Poten-tial Anti-Breast Cancer Drug Targets and Prognostic Markers. Genes (Basel), 13, 654.
https://doi.org/10.3390/genes13040654
[22] Ruan, L.W., Li, P.P. and Jin, L.P. (2020) SKA3 Promotes Cell Growth in Breast Cancer by Inhibiting PLK-1 Protein Degradation. Technology in Cancer Research & Treatment, 19, 1-8.
https://doi.org/10.1177/1533033820947488
[23] Salama, M.E. and Khairy, D.A. (2021) Polo-Like Kinase 1(PLK1) Immunohistochemical Expression in Triple Negative Breast Carcinoma: A Probable Therapeutic Target. Asian Pacific Journal of Cancer Prevention, 22, 3921-3925.
https://doi.org/10.31557/APJCP.2021.22.12.3921
[24] Ueda, A., Oikawa, K., Fujita, K., et al. (2019) Therapeutic Potential of PLK1 Inhibition in Triple-Negative Breast Cancer. Laboratory Investigation, 99, 1275-1286.
https://doi.org/10.1038/s41374-019-0247-4
[25] Ren, Y., Deng, R., Zhang, Q., et al. (2020) Bioinformatics Analy-sis of Key Genes in Triple Negative Breast Cancer and Validation of Oncogene PLK1. Annals of Translational Medicine, 8, 1637.
https://doi.org/10.21037/atm-20-6873
[26] Vogel, A., Meyer, T., Sapisochin, G., et al. (2022) Hepatocel-lular Carcinoma. The Lancet, 400, 1345-1362.
https://doi.org/10.1016/S0140-6736(22)01200-4
[27] Fan, W, Ma H. and Jin, B. (2022) Expression of FOXM1 and PLK1 Predicts Prognosis of Patients with Hepatocellular Carcinoma. Oncology Letters, 23, 146.
https://doi.org/10.3892/ol.2022.13266
[28] Xu, D., Wang, Y., Wu, J., et al. (2021) ECT2 Overexpression Pro-motes the Polarization of Tumor-Associated Macrophages in Hepatocellular Carcinoma via the ECT2/PLK1/PTEN Path-way. Cell Death & Disease, 12, 162.
https://doi.org/10.1038/s41419-021-03450-z
[29] Cheng, M., Yang, Q., Liu, Y., et al. (2022) SETD3 Methyl-transferase Regulates PLK1 Expression to Promote in Situ Hepatic Carcinogenesis. Frontiers in Oncology, 12, Article ID: 882202.
https://doi.org/10.3389/fonc.2022.882202
[30] Sinha, R. (2021) Colorectal Cancer. Clinical Radiolo-gy, 76, 870.
https://doi.org/10.1016/j.crad.2021.09.003
[31] Takahashi, T., Sano, B., Nagata, T., et al. (2003) Po-lo-Like Kinase 1 (PLK1) Is Overexpressed in Primary Colorectal Cancers. Cancer Science, 94, 148-152.
https://doi.org/10.1111/j.1349-7006.2003.tb01411.x
[32] Weichert, W., Kristiansen, G., Schmidt, M., et al. (2005) Polo-Like Kinase 1 Expression Is a Prognostic Factor in Human Colon Cancer. World Journal of Gastroenterology, 11, 5644-5650.
https://doi.org/10.3748/wjg.v11.i36.5644
[33] Li, S.S., Zhu, H.J., Li, J.Y., et al. (2020) MiR-NA-875-3p Alleviates the Progression of Colorectal Cancer via Negatively Regulating PLK1 Level. European Review for Medical and Pharmacological Sciences, 24, 1126-1133.
[34] Yi, Y.C., Liang, R., Chen, X.Y., et al. (2021) Dihydroar-temisinin Suppresses the Tumorigenesis and Cycle Progression of Colorectal Cancer by Targeting CDK1/CCNB1/PLK1 Signaling. Frontiers in Oncology, 11, Article ID: 768879.
https://doi.org/10.3389/fonc.2021.768879
[35] Wang, B., Huang, X., Liang, H., et al. (2021) PLK1 Inhibition Sen-sitizes Breast Cancer Cells to Radiation via Suppressing Autophagy. International Journal of Radiation Oncology, Biol-ogy, Physics, 110, 1234-1247.
https://doi.org/10.1016/j.ijrobp.2021.02.025
[36] Reda, M., Ngamcherdtrakul, W., Gu, S., et al. (2019) PLK1 and EGFR Targeted Nanoparticle as a Radiation Sensitizer for Non-Small Cell Lung Cancer. Cancer Letters, 467, 9-18.
https://doi.org/10.1016/j.canlet.2019.09.014
[37] Van den Bossche, J., Domen, A., Peeters, M., et al. (2019) Radi-osensitization of Non-Small Cell Lung Cancer Cells by the Plk1 Inhibitor Volasertib Is Dependent on the p53 Status. Cancers (Basel), 11, 1893.
https://doi.org/10.3390/cancers11121893
[38] Han, B., Sun, Y., Zhang, X., et al. (2022) Exogenous Proline En-hances Susceptibility of NSCLC to Cisplatin via Metabolic Reprogramming and PLK1-Mediated Cell Cycle Arrest. Frontiers in Pharmacology, 13, Article ID: 942261.
https://doi.org/10.3389/fphar.2022.942261
[39] Yu, Z., Deng, P., Chen, Y., et al. (2021) Inhibition of the PLK1-Coupled Cell Cycle Machinery Overcomes Resistance to Oxaliplatin in Colorectal Cancer. Advanced Science (Weinh), 8, e2100759.
https://doi.org/10.1002/advs.202100759
[40] Shin, S.B., Woo, S.U. and Yim, H. (2019) Cotargeting Plk1 and Androgen Receptor Enhances the Therapeutic Sensitivity of Paclitaxel-Resistant Prostate Cancer. Therapeutic Advances in Medical Oncology, 11, 1-17.
https://doi.org/10.1177/1758835919846375
[41] Yu, S., Bi, X., Yang, L., et al. (2019) Co-Delivery of Paclitaxel and PLK1-Targeted siRNA Using Aptamer-Functionalized Cationic Liposome for Synergistic Anti-Breast Cancer Effects in Vivo. Journal of Biomedical Nanotechnology, 15, 1135-1148.
https://doi.org/10.1166/jbn.2019.2751
[42] Shin, S.B., Kim, D.H., Kim, D.E., et al. (2021) Dual Targeting of EGFR with PLK1 Exerts Therapeutic Synergism in Tax-ane-Resistant Lung Adenocarcinoma by Suppressing ABC Transporters. Cancers (Basel), 13, 4413.
https://doi.org/10.3390/cancers13174413