[1]
|
Zhang, J., Zhang, L., Wang, J., et al. (2022) Polo-Like Kinase 1 Inhibitors in Human Cancer Therapy: Development and Therapeutic Potential. Journal of Medicinal Chemistry, 65, 10133-10160.
https://doi.org/10.1021/acs.jmedchem.2c00614
|
[2]
|
Sunkel, C.E. and Glover, D.M. (1988) Polo, a Mitotic Mutant of Drosophila Displaying Abnormal Spindle Poles. Journal of Cell Science, 89, 25-38. https://doi.org/10.1242/jcs.89.1.25
|
[3]
|
Iliaki, S., Beyaert, R. and Afonina, I.S. (2021) Polo-Like Kinase 1 (PLK1) Signaling in Cancer and beyond. Biochemical Pharmacology, 193, Article ID: 114747. https://doi.org/10.1016/j.bcp.2021.114747
|
[4]
|
Jimeno, A., Li, J., Messersmith, W.A., et al. (2008) Phase I Study of ON 01910.Na, a Novel Modulator of the Polo-Like Kinase 1 Pathway, in Adult Patients with Solid Tumors. Journal of Clinical Oncology, 26, 5504-5510.
https://doi.org/10.1200/JCO.2008.17.9788
|
[5]
|
Gheghiani, L., Wang, L., Zhang, Y., et al. (2021) PLK1 Induces Chromosomal Instability and Overrides Cell-Cycle Checkpoints to Drive Tumorigenesis. Cancer Research, 81, 1293-1307.
https://doi.org/10.1158/0008-5472.CAN-20-1377
|
[6]
|
Cirillo, L., Thomas, Y., Pintard, L., et al. (2016) BORA-Dependent PLK1 Regulation: A New Weapon for Cancer Therapy? Molecular & Cellular Oncology, 3, e1199265. https://doi.org/10.1080/23723556.2016.1199265
|
[7]
|
Gutteridge, R.E., Ndiaye, M.A., Liu, X., et al. (2016) Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Molecular Cancer Therapeutics, 15, 1427-1435. https://doi.org/10.1158/1535-7163.MCT-15-0897
|
[8]
|
Golsteyn, R.M., Schultz, S.J., Bartek, J., et al. (1994) Cell Cycle Analysis and Chromosomal Localization of Human PLK1, a Putative Homologue of the Mitotic Kinases Drosoph-ila Polo and Saccharomyces cerevisiae CDC5. Journal of Cell Science, 107, 1509-1517. https://doi.org/10.1242/jcs.107.6.1509
|
[9]
|
Liu, Z., Sun, Q. and Wang, X. (2017) PLK1, A Potential Target for Cancer Therapy. Translational Oncology, 10, 22-32.
https://doi.org/10.1016/j.tranon.2016.10.003
|
[10]
|
Chiappa, M., Petrella, S., Damia, G., et al. (2022) Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Frontiers in Oncology, 12, Article ID: 903016. https://doi.org/10.3389/fonc.2022.903016
|
[11]
|
Li, M., Liu, Z. and Wang, X. (2018) Exploration of the Combina-tion of PLK1 Inhibition with Immunotherapy in Cancer Treatment. Journal of Oncology, 2018, Article ID: 3979527. https://doi.org/10.1155/2018/3979527
|
[12]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
|
[13]
|
Wang, L., Gao, M., Sun, D., et al. (2022) PLK1 Is a Potential Prognostic Factor Associated with the Tumor Microenvironment in Lung Adenocarcinoma. BioMed Research International, 2022, Article ID: 7848771.
https://doi.org/10.1155/2022/7848771
|
[14]
|
Jang, H.-R., Shin, S.-B., Kim, C.-H., et al. (2021) PLK1/Vimentin Signaling Facilitates Immune Escape by Recruiting Smad2/3 to PD-L1 Promoter in Metastatic Lung Adenocarcinoma. Cell Death & Differentiation, 28, 2745-2764.
https://doi.org/10.1038/s41418-021-00781-4
|
[15]
|
Li, Z., Zhang, Y., Zhou, Y., et al. (2021) Tanshinone IIA Sup-presses the Progression of Lung Adenocarcinoma through Regulating CCNA2-CDK2 Complex and AURKA/PLK1 Pathway. Scientific Reports, 11, Article No. 23681.
https://doi.org/10.1038/s41598-021-03166-2
|
[16]
|
Yan, L., Zhang, Y., Li, K., et al. (2020) miR-593-5p Inhibit Cell Proliferation by Targeting PLK1 in Non Small Cell Lung Cancer Cells. Pathology Research and Practice, 216, Article ID: 152786.
https://doi.org/10.1016/j.prp.2019.152786
|
[17]
|
Chakraborty, S. and Park, C.Y. (2022) Pathogenic Mechanisms in Acute Myeloid Leukemia. Current Treatment Options in Oncology, 23, 1522-1534. https://doi.org/10.1007/s11864-022-01021-8
|
[18]
|
Guan, J., Liu, P., Wang, A., et al. (2020) Long Noncoding RNA ZEB2AS1 Affects Cell Proliferation and Apoptosis via the miR1225p/PLK1 Axis in Acute Myeloid Leukemia. Interna-tional Journal of Molecular Medicine, 46, 1490-1500.
https://doi.org/10.3892/ijmm.2020.4683
|
[19]
|
Mu, X., Bai, L., Xu, Y., et al. (2020) Protein Targeting Chimeric Molecules Specific for Dual Bromodomain 4 (BRD4) and Polo-Like Kinase 1 (PLK1) Proteins in Acute Myeloid Leu-kemia Cells. Biochemical and Biophysical Research Communications, 521, 833-839. https://doi.org/10.1016/j.bbrc.2019.11.007
|
[20]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E., et al. (2022) Cancer Statis-tics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708
|
[21]
|
Fang, L., Liu, Q., Cui, H., et al. (2022) Bioinformatics Analysis Highlight Differentially Expressed CCNB1 and PLK1 Genes as Poten-tial Anti-Breast Cancer Drug Targets and Prognostic Markers. Genes (Basel), 13, 654.
https://doi.org/10.3390/genes13040654
|
[22]
|
Ruan, L.W., Li, P.P. and Jin, L.P. (2020) SKA3 Promotes Cell Growth in Breast Cancer by Inhibiting PLK-1 Protein Degradation. Technology in Cancer Research & Treatment, 19, 1-8. https://doi.org/10.1177/1533033820947488
|
[23]
|
Salama, M.E. and Khairy, D.A. (2021) Polo-Like Kinase 1(PLK1) Immunohistochemical Expression in Triple Negative Breast Carcinoma: A Probable Therapeutic Target. Asian Pacific Journal of Cancer Prevention, 22, 3921-3925.
https://doi.org/10.31557/APJCP.2021.22.12.3921
|
[24]
|
Ueda, A., Oikawa, K., Fujita, K., et al. (2019) Therapeutic Potential of PLK1 Inhibition in Triple-Negative Breast Cancer. Laboratory Investigation, 99, 1275-1286. https://doi.org/10.1038/s41374-019-0247-4
|
[25]
|
Ren, Y., Deng, R., Zhang, Q., et al. (2020) Bioinformatics Analy-sis of Key Genes in Triple Negative Breast Cancer and Validation of Oncogene PLK1. Annals of Translational Medicine, 8, 1637. https://doi.org/10.21037/atm-20-6873
|
[26]
|
Vogel, A., Meyer, T., Sapisochin, G., et al. (2022) Hepatocel-lular Carcinoma. The Lancet, 400, 1345-1362.
https://doi.org/10.1016/S0140-6736(22)01200-4
|
[27]
|
Fan, W, Ma H. and Jin, B. (2022) Expression of FOXM1 and PLK1 Predicts Prognosis of Patients with Hepatocellular Carcinoma. Oncology Letters, 23, 146. https://doi.org/10.3892/ol.2022.13266
|
[28]
|
Xu, D., Wang, Y., Wu, J., et al. (2021) ECT2 Overexpression Pro-motes the Polarization of Tumor-Associated Macrophages in Hepatocellular Carcinoma via the ECT2/PLK1/PTEN Path-way. Cell Death & Disease, 12, 162.
https://doi.org/10.1038/s41419-021-03450-z
|
[29]
|
Cheng, M., Yang, Q., Liu, Y., et al. (2022) SETD3 Methyl-transferase Regulates PLK1 Expression to Promote in Situ Hepatic Carcinogenesis. Frontiers in Oncology, 12, Article ID: 882202. https://doi.org/10.3389/fonc.2022.882202
|
[30]
|
Sinha, R. (2021) Colorectal Cancer. Clinical Radiolo-gy, 76, 870. https://doi.org/10.1016/j.crad.2021.09.003
|
[31]
|
Takahashi, T., Sano, B., Nagata, T., et al. (2003) Po-lo-Like Kinase 1 (PLK1) Is Overexpressed in Primary Colorectal Cancers. Cancer Science, 94, 148-152. https://doi.org/10.1111/j.1349-7006.2003.tb01411.x
|
[32]
|
Weichert, W., Kristiansen, G., Schmidt, M., et al. (2005) Polo-Like Kinase 1 Expression Is a Prognostic Factor in Human Colon Cancer. World Journal of Gastroenterology, 11, 5644-5650. https://doi.org/10.3748/wjg.v11.i36.5644
|
[33]
|
Li, S.S., Zhu, H.J., Li, J.Y., et al. (2020) MiR-NA-875-3p Alleviates the Progression of Colorectal Cancer via Negatively Regulating PLK1 Level. European Review for Medical and Pharmacological Sciences, 24, 1126-1133.
|
[34]
|
Yi, Y.C., Liang, R., Chen, X.Y., et al. (2021) Dihydroar-temisinin Suppresses the Tumorigenesis and Cycle Progression of Colorectal Cancer by Targeting CDK1/CCNB1/PLK1 Signaling. Frontiers in Oncology, 11, Article ID: 768879.
https://doi.org/10.3389/fonc.2021.768879
|
[35]
|
Wang, B., Huang, X., Liang, H., et al. (2021) PLK1 Inhibition Sen-sitizes Breast Cancer Cells to Radiation via Suppressing Autophagy. International Journal of Radiation Oncology, Biol-ogy, Physics, 110, 1234-1247.
https://doi.org/10.1016/j.ijrobp.2021.02.025
|
[36]
|
Reda, M., Ngamcherdtrakul, W., Gu, S., et al. (2019) PLK1 and EGFR Targeted Nanoparticle as a Radiation Sensitizer for Non-Small Cell Lung Cancer. Cancer Letters, 467, 9-18. https://doi.org/10.1016/j.canlet.2019.09.014
|
[37]
|
Van den Bossche, J., Domen, A., Peeters, M., et al. (2019) Radi-osensitization of Non-Small Cell Lung Cancer Cells by the Plk1 Inhibitor Volasertib Is Dependent on the p53 Status. Cancers (Basel), 11, 1893.
https://doi.org/10.3390/cancers11121893
|
[38]
|
Han, B., Sun, Y., Zhang, X., et al. (2022) Exogenous Proline En-hances Susceptibility of NSCLC to Cisplatin via Metabolic Reprogramming and PLK1-Mediated Cell Cycle Arrest. Frontiers in Pharmacology, 13, Article ID: 942261.
https://doi.org/10.3389/fphar.2022.942261
|
[39]
|
Yu, Z., Deng, P., Chen, Y., et al. (2021) Inhibition of the PLK1-Coupled Cell Cycle Machinery Overcomes Resistance to Oxaliplatin in Colorectal Cancer. Advanced Science (Weinh), 8, e2100759. https://doi.org/10.1002/advs.202100759
|
[40]
|
Shin, S.B., Woo, S.U. and Yim, H. (2019) Cotargeting Plk1 and Androgen Receptor Enhances the Therapeutic Sensitivity of Paclitaxel-Resistant Prostate Cancer. Therapeutic Advances in Medical Oncology, 11, 1-17.
https://doi.org/10.1177/1758835919846375
|
[41]
|
Yu, S., Bi, X., Yang, L., et al. (2019) Co-Delivery of Paclitaxel and PLK1-Targeted siRNA Using Aptamer-Functionalized Cationic Liposome for Synergistic Anti-Breast Cancer Effects in Vivo. Journal of Biomedical Nanotechnology, 15, 1135-1148. https://doi.org/10.1166/jbn.2019.2751
|
[42]
|
Shin, S.B., Kim, D.H., Kim, D.E., et al. (2021) Dual Targeting of EGFR with PLK1 Exerts Therapeutic Synergism in Tax-ane-Resistant Lung Adenocarcinoma by Suppressing ABC Transporters. Cancers (Basel), 13, 4413.
https://doi.org/10.3390/cancers13174413
|