|
[1]
|
Jia, L., Du, Y., Chu, L., et al. (2020) Prevalence, Risk Factors, and Management of Dementia and Mild Cognitive Impairment in Adults Aged 60 Years or Older in China: A Cross-Sectional Study. The Lancet Public Health, 5, e661-e671. [Google Scholar] [CrossRef]
|
|
[2]
|
Deture, M.A. and Dickson, D.W. (2019) The Neuropathological Diagnosis of Alzheimer’s Disease. Molecular Neurodegeneration, 14, 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kang, S., Lee, Y.H. and Lee, J.E. (2017) Metabolism-Centric Overview of the Pathogenesis of Alzheimer’s Disease. Yonsei Medical Journal, 58, 479-488. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Plascencia-Villa, G. and Perry, G. (2021) Preventive and Therapeutic Strategies in Alzheimer’s Disease: Focus on Oxidative Stress, Redox Metals, and Ferroptosis. Antioxidants & Redox Signaling, 34, 591-610. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Long, J.M. and Holtzman, D.M. (2019) Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 179, 312-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jongsiriyanyong, S. and Limpawattana, P. (2018) Mild Cognitive Impairment in Clinical Practice: A Review Article. American Journal of Alzheimer’s Disease & Other Dementias, 33, 500-507. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Villemagne, V.L., Dore, V., Burnham, S.C., et al. (2018) Imaging Tau and Amyloid-Beta Proteinopathies in Alzheimer Disease and Other Conditions. Nature Reviews Neurology, 14, 225-236. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Silva, M., Loures, C., Alves, L., et al. (2019) Alzheimer’s Disease: Risk Factors and Potentially Protective Measures. Journal of Biomedical Science, 26, 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Cryan, J.F., O’riordan, K.J., Sandhu, K., et al. (2020) The Gut Microbiome in Neurological Disorders. The Lancet Neurology, 19, 179-194. [Google Scholar] [CrossRef]
|
|
[10]
|
Cryan, J.F., O’riordan, K.J., Cowan, C., et al. (2019) The Microbiota-Gut-Brain Axis. Physiological Reviews, 99, 1877-2013. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Rutsch, A., Kantsjo, J.B. and Ronchi, F. (2020) The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Frontiers in Immunology, 11, Article ID: 604179. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Walker, L.C. (2020) Aβ Plaques. Free Neuropathology, 1, 31.
|
|
[13]
|
Sampson, T.R., Challis, C., Jain, N., et al. (2020) A Gut Bacterial Amyloid Promotes Alpha-Synuclein Aggregation and Motor Impairment in Mice. Elife, 9, e53111. [Google Scholar] [CrossRef]
|
|
[14]
|
Mcgeer, P.L. and Mcgeer, E.G. (2013) The Amyloid Cascade-Inflammatory Hypothesis of Alzheimer Disease: Implications for Therapy. Acta Neuropathologica, 126, 479-497. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tiwari, S., Atluri, V., Kaushik, A., et al. (2019) Alzheimer’s Disease: Pathogenesis, Diagnostics, and Therapeutics. International Journal of Nanomedicine, 14, 5541-5554. [Google Scholar] [CrossRef]
|
|
[16]
|
Craig-Schapiro, R., Perrin, R.J., Roe, C.M., et al. (2010) YKL-40: A Novel Prognostic Fluid Biomarker for Preclinical Alzheimer’s Disease. Biological Psychiatry, 68, 903-912. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Magalingam, K.B., Radhakrishnan, A., Ping, N.S., et al. (2018) Current Concepts of Neurodegenerative Mechanisms in Alzheimer’s Disease. BioMed Research International, 2018, Article ID: 3740461. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, Z., Yang, L. and Zheng, H. (2012) Role of APP and Abeta in Synaptic Physiology. Current Alzheimer Research, 9, 217-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhao, X.L., Wang, W.A., Tan, J.X., et al. (2010) Expression of Beta-Amyloid Induced Age-Dependent Presynaptic and Axonal Changes in Drosophila. Journal of Neuroscience, 30, 1512-1522. [Google Scholar] [CrossRef]
|
|
[20]
|
Manczak, M., Calkins, M.J. and Reddy, P.H. (2011) Impaired Mitochondrial Dynamics and Abnormal Interaction of Amyloid Beta with Mitochondrial Protein Drp1 in Neurons from Patients with Alzheimer’s Disease: Implications for Neuronal Damage. Human Molecular Genetics, 20, 2495-2509. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Morais, C.S., Swerdlow, R.H. and Oliveira, C.R. (2002) Induction of Cytochrome c-Mediated Apoptosis by Amyloid Beta 25-35 Requires Functional Mitochondria. Brain Research, 931, 117-125. [Google Scholar] [CrossRef]
|
|
[22]
|
Kamat, P.K., Kalani, A., Rai, S., et al. (2016) Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer’s Disease: Understanding the Therapeutics Strategies. Molecular Neurobiology, 53, 648-661. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Cortes-Canteli, M., Paul, J., Norris, E.H., et al. (2010) Fibrinogen and Beta-Amyloid Association Alters Thrombosis and Fibrinolysis: A Possible Contributing Factor to Alzheimer’s Disease. Neuron, 66, 695-709. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Carlyle, B.C., Nairn, A.C., Wang, M., et al. (2014) cAMP-PKA Phosphorylation of Tau Confers Risk for Degeneration in Aging Association Cortex. Proceedings of the National Academy of Sciences of the United States of America, 111, 5036-5041. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Serrano-Pozo, A., Frosch, M.P., Masliah, E., et al. (2011) Neuropathological Alterations in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 1, a6189. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Breijyeh, Z. and Karaman, R. (2020) Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules, 25, 5789. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, H., Wei, W., Zhao, M., et al. (2021) Interaction between Abeta and Tau in the Pathogenesis of Alzheimer’s Disease. International Journal of Biological Sciences, 17, 2181-2192. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Shafiei, S.S., Guerrero-Munoz, M.J. and Castillo-Carranza, D.L. (2017) Tau Oligomers: Cytotoxicity, Propagation, and Mitochondrial Damage. Frontiers in Aging Neuroscience, 9, 83. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Khan, S.S. and Bloom, G.S. (2016) Tau: The Center of a Signaling Nexus in Alzheimer’s Disease. Frontiers in Neuroscience, 10, 31. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Mecocci, P., Boccardi, V., Cecchetti, R., et al. (2018) A Long Journey into Aging, Brain Aging, and Alzheimer’s Disease Following the Oxidative Stress Tracks. Journal of Alzheimer’s Disease, 62, 1319-1335. [Google Scholar] [CrossRef]
|
|
[31]
|
Cobley, J.N., Fiorello, M.L. and Bailey, D.M. (2018) 13 Reasons Why the Brain Is Susceptible to Oxidative Stress. Redox Biology, 15, 490-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Thapa, A. and Carroll, N.J. (2017) Dietary Modulation of Oxidative Stress in Alzheimer’s Disease. International Journal of Molecular Sciences, 18, 1583. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Nam, E., Derrick, J.S., Lee, S., et al. (2018) Regulatory Activities of Dopamine and Its Derivatives toward Metal-Free and Metal-Induced Amyloid-beta Aggregation, Oxidative Stress, and Inflammation in Alzheimer’s Disease. ACS Chemical Neuroscience, 9, 2655-2666. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Schulz, E., Wenzel, P., Munzel, T., et al. (2014) Mitochondrial Redox Signaling: Interaction of Mitochondrial Reactive Oxygen Species with Other Sources of Oxidative Stress. Antioxidants & Redox Signaling, 20, 308-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, X., Wang, W., Li, L., et al. (2014) Oxidative Stress and Mitochondrial Dysfunction in Alzheimer’s Disease. Biochim Biophys Acta, 1842, 1240-1247. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tönnies, E. and Trushina, E. (2017) Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 57, 1105-1121. [Google Scholar] [CrossRef]
|
|
[37]
|
Zhao, Y. and Zhao, B. (2013) Oxidative Stress and the Pathogenesis of Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity, 2013, Article ID: 316523. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Malard, F., Dore, J., Gaugler, B., et al. (2021) Introduction to Host Microbiome Symbiosis in Health and Disease. Mucosal Immunology, 14, 547-554. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cheng, X., Wang, H., Zheng, Z., et al. (2021) Alzheimer Disease Effects of Different Stages on Intestinal Flora: A Protocol for Systematic Review and Meta-Analysis. Medicine (Baltimore), 100, e28462. [Google Scholar] [CrossRef]
|
|
[40]
|
Kim, M.S., Kim, Y., Choi, H., et al. (2020) Transfer of a Healthy Microbiota Reduces Amyloid and Tau Pathology in an Alzheimer’s Disease Animal Model. Gut, 69, 283-294. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Mueller, N.T., Bakacs, E., Combellick, J., et al. (2015) The Infant Microbiome Development: Mom Matters. Trends in Molecular Medicine, 21, 109-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wang, G., Huang, S., Wang, Y., et al. (2019) Bridging Intestinal Immunity and Gut Microbiota by Metabolites. Cellular and Molecular Life Sciences, 76, 3917-3937. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Briguglio, M., Dell’Osso, B., Panzica, G., et al. (2018) Dietary Neurotransmitters: A Narrative Review on Current Knowledge. Nutrients, 10, 591. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Pistollato, F., Sumalla, C.S., Elio, I., et al. (2016) Role of Gut Microbiota and Nutrients in Amyloid Formation and Pathogenesis of Alzheimer Disease. Nutrition Reviews, 74, 624-634. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Fox, M., Knorr, D.A. and Haptonstall, K.M. (2019) Alzheimer’s Disease and Symbiotic Microbiota: An Evolutionary Medicine Perspective. Annals of the New York Academy of Sciences, 1449, 3-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Chen, Y., Liang, Z., Blanchard, J., et al. (2013) A Non-Transgenic Mouse Model (icv-STZ Mouse) of Alzheimer’s Disease: Similarities to and Differences from the Transgenic Model (3xTg-AD Mouse). Molecular Neurobiology, 47, 711-725. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Gotz, J., Bodea, L.G. and Goedert, M. (2018) Rodent Models for Alzheimer Disease. Nature Reviews Neuroscience, 19, 583-598. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Sasaguri, H., Nilsson, P., Hashimoto, S., et al. (2017) APP Mouse Models for Alzheimer’s Disease Preclinical Studies. EMBO Journal, 36, 2473-2487. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Hang, Z., Lei, T., Zeng, Z., et al. (2022) Composition of Intestinal Flora Affects the Risk Relationship between Alzheimer’s Disease/Parkinson’s Disease and Cancer. Biomedicine & Pharmacotherapy, 145, Article ID: 112343. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Shen, T., Yue, Y., He, T., et al. (2021) The Association between the Gut Microbiota and Parkinson’s Disease, a Meta-Analysis. Frontiers in Aging Neuroscience, 13, Article ID: 636545. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhang, L., Wang, Y., Xiayu, X., et al. (2017) Altered Gut Microbiota in a Mouse Model of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 60, 1241-1257. [Google Scholar] [CrossRef]
|
|
[52]
|
Harach, T., Marungruang, N., Duthilleul, N., et al. (2017) Reduction of Abeta Amyloid Pathology in APPPS1 Transgenic Mice in the Absence of Gut Microbiota. Scientific Reports, 7, Article No. 41802. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Le Page, A., Dupuis, G., Frost, E.H., et al. (2018) Role of the Peripheral Innate Immune System in the Development of Alzheimer’s Disease. Experimental Gerontology, 107, 59-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Calsolaro, V. and Edison, P. (2016) Neuroinflammation in Alzheimer’s Disease: Current Evidence and Future Directions. Alzheimer’s & Dementia, 12, 719-732. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Angelucci, F., Cechova, K., Amlerova, J., et al. (2019) Antibiotics, Gut Microbiota, and Alzheimer’s Disease. Journal of Neuroinflammation, 16, 108. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Mulak, A. and Bonaz, B. (2015) Brain-Gut-Microbiota Axis in Parkinson’s Disease. World Journal of Gastroenterology, 21, 10609-10620. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Sundman, M.H., Chen, N.K., Subbian, V., et al. (2017) The Bidirectional Gut-Brain-Microbiota Axis as a Potential Nexus between Traumatic Brain Injury, Inflammation, and Disease. Brain, Behavior, and Immunity, 66, 31-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Caspani, G. and Swann, J. (2019) Small Talk: Microbial Metabolites Involved in the Signaling from Microbiota to Brain. Current Opinion in Pharmacology, 48, 99-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Alam, R., Abdolmaleky, H.M. and Zhou, J.R. (2017) Microbiome, Inflammation, Epigenetic Alterations, and Mental Diseases. Neuropsychiatric Genetics, Part B of the American Journal of Medical Genetics, 174, 651-660. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Obermeier, B., Daneman, R. and Ransohoff, R.M. (2013) Development, Maintenance and Disruption of the Blood-Brain Barrier. Nature Medicine, 19, 1584-1596. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Sweeney, M.D., Sagare, A.P. and Zlokovic, B.V. (2018) Blood-Brain Barrier Breakdown in Alzheimer Disease and Other Neurodegenerative Disorders. Nature Reviews Neurology, 14, 133-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Park, J. and Kim, C.H. (2021) Regulation of Common Neurological Disorders by Gut Microbial Metabolites. Experimental & Molecular Medicine, 53, 1821-1833. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Navarro, V., Sanchez-Mejias, E., Jimenez, S., et al. (2018) Microglia in Alzheimer’s Disease: Activated, Dysfunctional or Degenerative. Frontiers in Aging Neuroscience, 10, 140. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Daniels, B.P., Holman, D.W., Cruz-Orengo, L., et al. (2014) Viral Pathogen-Associated Molecular Patterns Regulate Blood-Brain Barrier Integrity via Competing Innate Cytokine Signals. mBio, 5, e1414-e1476. [Google Scholar] [CrossRef]
|
|
[65]
|
Braniste, V., Al-Asmakh, M., Kowal, C., et al. (2014) The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Science Translational Medicine, 6, 158r-263r. [Google Scholar] [CrossRef] [PubMed]
|