|
[1]
|
Garg, V., Verma, S. and Connelly, K. (2019) Mechanistic Insights Regarding the Role of SGLT2 Inhibitors and GLP1 Agonist Drugs on Cardiovascular Disease in Diabetes. Progress in Cardiovascular Diseases, 62, 349-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
中国老年2型糖尿病防治临床指南(2022年版) [J]. 中国糖尿病杂志, 2022, 30(1): 2-51.
|
|
[3]
|
Collaboration, T.E.R.F. (2010) Diabetes Mellitus, Fasting Blood Glucose Concentration, and Risk of Vascular Disease: A Collaborative Meta-Analysis of 102 Prospective Studies. The Lancet, 375, 9733. [Google Scholar] [CrossRef]
|
|
[4]
|
Jia, G., Hill, M.A. and Sowers, J.R. (2018) Diabetic Cardi-omyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circulation Research, 122, 624-638. [Google Scholar] [CrossRef]
|
|
[5]
|
Cheng, A.Y.Y. (2021) Why Choose between SGLT2 In-hibitors and GLP1-RA When You Can Use Both? The Time to Act Is Now. Circulation, 143, 780-782. [Google Scholar] [CrossRef]
|
|
[6]
|
Merovci, A., Solis-Herrera, C., Daniele, G., et al. (2014) Dapagliflozin Improves Muscle Insulin Sensitivity but Enhances Endogenous Glucose Production [Published Correction Appears in J Clin Invest. 2014 May 1, 124(5): 2287]. Jour- nal of Clinical Investigation, 124, 509-514. [Google Scholar] [CrossRef]
|
|
[7]
|
Merovci, A., Mari, A., Solis-Herrera, C., et al. (2015) Dapagliflozin Lowers Plasma Glucose Concentration and Improves β-Cell Function [Published Correction Appears in J Clin Endocrinol Metab. 2017 Dec 1, 102(12): 4662]. The Journal of Clinical Endocrinology & Metabolism, 100, 1927-1932. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
DeFronzo, R.A. (2017) Combination Therapy with GLP-1 Receptor Agonist and SGLT2 Inhibitor. Diabetes, Obesity and Metabolism, 19, 1353-1362. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hallow, K.M., Helmlinger, G., Greasley, P.J., et al. (2018) Why Do SGLT2 Inhibitors Reduce Heart Failure Hospitalization? A Differential Volume Regulation Hypothesis. Diabetes, Obe-sity and Metabolism, 20, 479-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kario, K., Okada, K., Kato, M., et al. (2018) 24-Hour Blood Pres-sure-Lowering Effect of an SGLT-2 Inhibitor in Patients with Diabetes and Uncontrolled Nocturnal Hypertension: Re-sults from the Randomized, Placebo-Controlled SACRA Study [Published Online Ahead of Print, 2018 Nov 29]. Circu-lation, 139, 2089-2097. [Google Scholar] [CrossRef]
|
|
[11]
|
Wiviott, S.D., Raz, I., Bonaca, M.P., et al. (2019) Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. The New England Journal of Medicine, 380, 347-357. [Google Scholar] [CrossRef]
|
|
[12]
|
Scheen, A.J. (2019) Effect of SGLT2 Inhibitors on the Sympathetic Nervous System and Blood Pressure. Current Cardiology Reports, 21, 70. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Horie, I., Abiru, N., Hongo, R., et al. (2018) Increased Sugar In-take as a Form of Compensatory Hyperphagia in Patients with Type 2 Diabetes under Dapagliflozin Treatment. Diabetes Research and Clinical Practice, 135, 178-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Miyachi, Y., Tsuchiya, K., Shiba, K., et al. (2018) A Reduced M1-Like/M2-Like Ratio of Macrophages in Healthy Adipose Tissue Expansion during SGLT2 Inhibition. Scientific Re-ports, 8, Article No. 16113. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kang, S., Verma, S., Hassanabad, A.F., et al. (2020) Direct Ef-fects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG Outcome Results. Canadian Journal of Cardiology, 36, 543-553. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kappel, B.A., Lehrke, M., Schütt, K., et al. (2017) Effect of Em-pagliflozin on the Metabolic Signature of Patients with Type 2 Diabetes Mellitus and Cardiovascular Disease. Circulation, 136, 969-972. [Google Scholar] [CrossRef]
|
|
[17]
|
Esterline, R.L., Vaag, A., Oscarsson, J. and Vora, J. (2018) Mechanisms in Endocrinology: SGLT2 Inhibitors: Clinical Benefits by Restoration of Normal Diurnal Metabo-lism? European Journal of Endocrinology, 178, R113-R125. [Google Scholar] [CrossRef]
|
|
[18]
|
Ling, H., Gray, C.B., Zambon, A.C., et al. (2013) Ca2+/Calmodulin-Dependent Protein Kinase II δ Mediates Myocardial Ischemia/Reperfusion Injury through Nuclear Factor-κB. Circulation Research, 112, 935-944. [Google Scholar] [CrossRef]
|
|
[19]
|
Andreadou, I., Bell, R.M., Bøtker, H.E. and Zuurbier, C.J. (2020) SGLT2 Inhibitors Reduce Infarct Size in Reperfused Ischemic Heart and Improve Cardiac Function during Ischemic Episodes in Preclinical Models. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1866, Article ID: 165770. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Bonnet, F. and Scheen, A.J. (2018) Effects of SGLT2 Inhibitors on Systemic and Tissue Low-Grade Inflammation: The Potential Contribution to Diabetes Complications and Cardiovascular Disease. Diabetes & Metabolism, 44, 457-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sano, M., Goto, S. (2019) Possible Mechanism of Hematocrit Elevation by Sodium Glucose Cotrans39orter 2 Inhibitors and Associated Beneficial Renal and Cardiovascular Effects. Circulation, 139, 1985-1987. [Google Scholar] [CrossRef]
|
|
[22]
|
Januzzi, J.L., Butler, J., Jarolim, P., et al. (2017) Effects of Canagliflozin on Cardiovascular Biomarkers in Older Adults with Type 2 Diabetes. Journal of the American College of Cardiology, 70, 704-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lopaschuk, G.D. and Verma, S. (2020) Mechanisms of Cardio-vascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC: Basic to Translational Science, 5, 632-644. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zinman, B., Wanner, C., Lachin, J.M., et al. (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. The New England Journal of Medicine, 373, 2117-2128. [Google Scholar] [CrossRef]
|
|
[25]
|
Neal, B., Perkovic, V., Mahaffey, K.W., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. The New England Journal of Medicine, 377, 644-657. [Google Scholar] [CrossRef]
|
|
[26]
|
McMurray, J.J.V., Solomon, S.D., Inzucchi, S.E., et al. (2019) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. The New England Journal of Medicine, 381, 1995-2008.
|
|
[27]
|
Cosentino, F., Cannon, C.P., Cherney, D.Z.I., et al. (2020) Efficacy of Ertugliflozin on Heart Fail-ure-Related Events in Patients with Type 2 Diabetes Mellitus and Established Atherosclerotic Cardiovascular Disease: Results of the VERTIS CV Trial. Circulation, 142, 2205-2215. [Google Scholar] [CrossRef]
|
|
[28]
|
(2019) Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. The New England Journal of Medicine, 380, 2295-2306. [Google Scholar] [CrossRef]
|
|
[29]
|
Nauck, M.A., Quast, D.R., Wefers, J. and Pfeiffer, A.F.H. (2021) The Evolving Story of Incretins (GIP and GLP-1) in Metabolic and Cardiovascular Disease: A Pathophysiological Up-date. Diabetes, Obesity and Metabolism, 23, 5-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Robinson, L.E., Holt, T.A., Rees, K., et al. (2013) Effects of Exenatide and Liraglutide on Heart Rate, Blood Pressure and Body Weight: Systematic Review and Meta-Analysis. BMJ Open, 3, e001986. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Lorenz, M., Lawson, F., Owens, D., et al. (2017) Differential Effects of Glucagon-Like Peptide-1 Receptor Agonists on Heart Rate. Cardiovascular Diabetology, 16, 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Nakatani, Y., Kawabe, A., Matsumura, M., et al. (2016) Effects of GLP-1 Receptor Agonists on Heart Rate and the Autonomic Nervous System Using Holter Electrocardiography and Power Spectrum Analysis of Heart Rate Variability. Diabetes Care, 39, e22-e23. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Pfeffer, M.A., Claggett, B., Diaz, R., et al. (2015) Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. The New England Journal of Medicine, 373, 2247-2257. [Google Scholar] [CrossRef]
|
|
[34]
|
Marso, S.P., Daniels, G.H., Brown-Frandsen, K., et al. (2016) Li-raglutide and Cardiovascular Outcomes in Type 2 Diabetes. The New England Journal of Medicine, 375, 311-322. [Google Scholar] [CrossRef]
|
|
[35]
|
Holman, R.R., Bethel, M.A., Mentz, R.J., et al. (2017) Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. The New England Journal of Medicine, 377, 1228-1239. [Google Scholar] [CrossRef]
|
|
[36]
|
Marso, S.P., Bain, S.C., Consoli, A., et al. (2016) Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. The New England Journal of Medicine, 375, 1834-1844. [Google Scholar] [CrossRef]
|
|
[37]
|
Hernandez, A.F., Green, J.B., Janmohamed, S., et al. (2018) Albiglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Cardiovascular Disease (Harmony Outcomes): A Double-Blind, Randomised Placebo-Controlled Trial. The Lancet, 392, 1519-1529.
|
|
[38]
|
Gerstein, H.C., Colhoun, H.M., Dagenais, G.R., et al. (2019) Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomised Placebo-Controlled Trial. The Lancet, 394, 121-130.
|
|
[39]
|
Husain, M., Birkenfeld, A.L., Donsmark, M., et al. (2019) Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. The New England Journal of Medicine, 381, 841-851. [Google Scholar] [CrossRef]
|
|
[40]
|
Frías, J.P., Guja, C., Hardy, E., et al. (2016) Exenatide Once Weekly plus Dapagliflozin Once Daily versus Exenatide or Dapagliflozin Alone in Patients with Type 2 Diabetes Inadequately Controlled with Metformin Monotherapy (DURATION-8): A 28 Week, Multicentre, Double-Blind, Phase 3, Randomised Controlled Trial [Published Correction Appears in Lancet Diabetes Endocrinol. 2017 Dec, 5(12 ): e8]. The Lancet Diabetes & Endocrinology, 4, 1004-1016. [Google Scholar] [CrossRef]
|
|
[41]
|
Jabbour, S.A., Frías, J.P., Hardy, E., et al. (2018) Safety and Efficacy of Exenatide Once Weekly plus Dapagliflozin Once Daily versus Exenatide or Dapagliflozin Alone in Patients with Type 2 Diabetes Inadequately Controlled with Metformin Monotherapy: 52-Week Results of the DURATION-8 Randomized Controlled Trial. Diabetes Care, 41, 2136-2146. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ludvik, B., Frías, J.P., Tinahones, F.J., et al. (2018) Dulaglutide as Add-On Therapy to SGLT2 Inhibitors in Patients with Inade-quately Controlled Type 2 Diabetes (AWARD-10): A 24-Week, Randomised, Double-Blind, Placebo-Con- trolled Trial [Published Correction Appears in The Lancet Diabetes & Endocrinology 2018 Jun, 6(6): e5]. The Lancet Diabetes & Endocrinology, 6, 370-381. [Google Scholar] [CrossRef]
|
|
[43]
|
Dave, C.V., Kim, S.C., Goldfine, A.B., et al. (2021) Risk of Cardiovascular Outcomes in Patients with Type 2 Diabetes after Addition of SGLT2 Inhibi-tors versus Sulfonylureas to Baseline GLP-1RA Therapy [Published Correction Appears in Circulation. 2021 Feb 23, 143(8): e744]. Circulation, 143, 770-779. [Google Scholar] [CrossRef]
|
|
[44]
|
Cosentino, F., Grant, P.J., Aboyans, V., et al. (2020) 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD [Published Correction Appears in Eur Heart J. 2020 Dec 1, 41(45): 4317]. European Heart Journal, 41, 255-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
American Diabetes Association (2021) 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2021. Diabetes Care, 44, S111-S124. [Google Scholar] [CrossRef]
|