|
[1]
|
李康(2018). 出生早期PM2.5暴露致大鼠自闭症样症状及其机制研究. 博士学位论文, 北京: 军事科学院.
|
|
[2]
|
李玲, 李德欣, 刘瑜, 等(2020). 孤独症模型鼠海马N-酰基乙醇胺相关受体及代谢酶的表达研究. 中国儿童保健杂志, 28(4), 411-415.
|
|
[3]
|
牟君, 谢鹏(2006). 海马神经发生障碍——抑郁症发病机制的新观念. 第三军医大学学报, 28(11), 1264-1266.
|
|
[4]
|
区英琦, 许世彤, 等(1988). 海马CA3区在长时记忆的保持中的作用. 心理学报, (1), 52-57.
|
|
[5]
|
王功伍, 蔡景霞(2010). 海马-前额叶神经回路与工作记忆. 动物学研究, 31(1), 50-56.
|
|
[6]
|
张瑞宇(2019). 促进海马神经发生对自闭症模型小鼠社交缺陷的影响及机制研究. 硕士学位论文, 重庆: 陆军军医大学.
|
|
[7]
|
郑晨光(2013). 大鼠theta和gamma神经振荡参与调节突触可塑性及潜在机制探究. 博士学位论文, 天津: 南开大学.
|
|
[8]
|
Bauer, R.H. and Fuster, J.M. (1976) Delayed-Matching and Delayed-Response Deficit from Cooling Dorsolateral Prefrontal Cortex in Monkeys. Journal of Comparative and Physiological Psychology, 90, 293-302. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Becker, A., Grecksch, G., Bernstein, H. G. et al. (1999). Social Behaviour in Rats Lesioned with Ibotenic Acid in the Hippocampus: Quantitative and Qualitative Analysis. Psychopharmacology, 144, 333-338.[CrossRef] [PubMed]
|
|
[10]
|
Benchenane, K., Peyrache, A., Khamassi, M. et al. (2010). Coherent Theta Oscillations and Reorganization of Spike Timing in the Hippocampal-Prefrontal Network upon Learning. Neuron, 66, 921-936.[CrossRef] [PubMed]
|
|
[11]
|
Berger, B., Griesmayr, B., Minarik, T., Biel, A. L., Pinal, D., Sterr, A., & Sauseng, P. (2019). Dynamic Regulation of Interregional Cortical Communication by Slow Brain Oscillations during Working Memory. Nature Communications, 10, Article 4242.[CrossRef] [PubMed]
|
|
[12]
|
Burette, F., Jay, T. M., & Laroche, S. (1997). Reversal of LTP in the Hippocampal Afferent Fiber System to the Prefrontal Cortex in Vivo with Low-Frequency Patterns of Stimulation That Do Not Produce LTD. Journal of Neurophysiology, 78, 1155-1160.[CrossRef] [PubMed]
|
|
[13]
|
Chiang, M.-C., Huang, A. J., Wintzer, M. E. et al. (2018). A Role for CA3 in Social Recognition Memory. Behavioural Brain Research, 354, 22-30.[CrossRef] [PubMed]
|
|
[14]
|
Corkin, S. (1984). Lasting Consequences of Bilateral Medial Temporal Lobectomy: Clinical Course and Experimental Findings in H.M. Seminars in Neurology, 4, 249-259.[CrossRef]
|
|
[15]
|
Eichenbaum, H. (2017). Prefrontal-Hippocampal Interactions in Episodic Memory. Nature Reviews Neuroscience, 18, 547-558.[CrossRef] [PubMed]
|
|
[16]
|
Eschenko, O., Ramadan, W., Mölle, M. et al. (2008). Sustained Increase in Hippocampal Sharp-Wave Ripple Activity during Slow-Wave Sleep after Learning. Learning & Memory, 15, 222-228.[CrossRef] [PubMed]
|
|
[17]
|
Ferguson, J. N., Young, L. J., & Insel, T. R. (2002). The Neuroendocrine Basis of Social Recognition. Frontiers in Neuroendocrinology, 23, 200-224.[CrossRef] [PubMed]
|
|
[18]
|
Foster, D. J. (2017). Replay Comes of Age. Annual Review of Neuroscience, 40, 581-602.[CrossRef] [PubMed]
|
|
[19]
|
Friedman, H., & Goldman-Rakic, P. (1989). Activation of the Hippocampus and Dentate Gyrus by Working Memory: A 2-Deoxyglucose Study of Behaving Rhesus Monkeys. The Journal of Neuroscience, 8, 4693-4706.[CrossRef]
|
|
[20]
|
Fuster, J. M. (2001). The Prefrontal Cortex—An Update: Time Is of the Essence. Neuron, 30, 319-333.[CrossRef]
|
|
[21]
|
Goldman-Rakic, P. S. (1991). The Circuitry of Working Memory Revealed by Anatomy and Metabolic Imaging. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Frontal Lobe Function and Dysfunction (pp. 72-91). Oxford University Press.
|
|
[22]
|
Hao, S., Tang, B., Wu, Z. et al. (2015). Forniceal Deep Brain Stimulation Rescues Hippocampal Memory in Rett Syndrome Mice. Nature, 526, 430-434.[CrossRef] [PubMed]
|
|
[23]
|
Harvey, P. O., Fossati, P., & Lepage, M. (2007). Modulation of Memory Formation by Stimulus Content: Specific Role of the Medial Prefrontal Cortex in the Successful Encoding of Social Pictures. Journal of Cognitive Neuroscience, 19, 351-362.[CrossRef] [PubMed]
|
|
[24]
|
Harvey, P.-O., & Lepage, M. (2014). Neural Correlates of Recognition Memory of Social Information in People with Schizophrenia. Journal of Psychiatry & Neuroscience, 39, 97-109.
|
|
[25]
|
Hitti, F. L., & Siegelbaum, S. A. (2014). The Hippocampal CA2 Region Is Essential for Social Memory. Nature, 508, 88-92.[CrossRef] [PubMed]
|
|
[26]
|
Jacobsen, C. F., & Nissen, H. W. (1937). Studies of Cerebral Function in Primates. IV. The Effects of Frontal Lobe Lesions on the Delayed Alternation Habit in Monkeys. Journal of Comparative Psychology, 23, 101-112.[CrossRef]
|
|
[27]
|
Jones, M. W., & Wilson, M. A. (2010). Phase Precession of Medial Prefrontal Cortical Activity Relative to the Hippocampal Theta Rhythm. Hippocampus, 15, 867-873.[CrossRef] [PubMed]
|
|
[28]
|
Khodagholy, D., Gelinas, J. N., & Buzsáki, G. (2017). Learning-Enhanced Coupling between Ripple Oscillations in Association Cortices and Hippocampus. Science, 358, 369-372.[CrossRef] [PubMed]
|
|
[29]
|
Kogan, J. H., Frankland, P. W., & Silva, A. J. (2015). Long-Term Memory Underlying Hippocampus-Dependent Social Recognition in Mice. Hippocampus, 10, 47-56.[CrossRef]
|
|
[30]
|
Laroche, S., Jay, T. M., & Thierry, A. M. (1990). Long-Term Potentiation in the Prefrontal Cortex Following Stimulation of the Hippocampal CA1/Subicular Region. Neuroscience Letters, 114, 184-190.[CrossRef]
|
|
[31]
|
Manns, J. R., Hopkins, R. O., Reed, J. M. et al. (2007). Recognition Memory and the Human Hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 37, 171-180.[CrossRef]
|
|
[32]
|
Meyer, M. L., Spunt, R. P., Berkman, E. T., Taylor, S. E., & Lieberman, M. D. (2012). Evidence for Social Working Memory from a Parametric Functional MRI Study. Proceedings of the National Academy of Sciences of the United States of America, 109, 1883-1888.[CrossRef] [PubMed]
|
|
[33]
|
Mitchell, J. P (2004). Encoding-Specific Effects of Social Cognition on the Neural Correlates of Subsequent Memory. Journal of Neuroscience, 24, 4912-4917.[CrossRef]
|
|
[34]
|
Myroshnychenko, M., Seamans, J. K., Phillips, A. G., & Lapish, C. C. (2017). Temporal Dynamics of Hippocampal and Medial Prefrontal Cortex Interactions during the Delay Period of a Working Memory-Guided Foraging Task. Cerebral Cortex, 27, 5331-5342.[CrossRef] [PubMed]
|
|
[35]
|
Oh, S. W., Harris, J. A., Ng, L. et al. (2014). A Mesoscale Connectome of the Mouse Brain. Nature, 508, 207-214.[CrossRef] [PubMed]
|
|
[36]
|
Pena, R. R., Pereira-Caixeta, A. R., Moraes, M. et al. (2014). Anisomycin Administered in the Olfactory Bulb and Dorsal Hippocampus Impaired Social Recognition Memory Consolidation in Different Time-Points. Brain Research Bulletin, 109, 151-157.[CrossRef] [PubMed]
|
|
[37]
|
Scoville, W. B., & Milner, B. (1957). Loss of Recent Memory after Bilateral Hippocampal Lesions. Journal of Neurology, Neurosurgery and Psychiatry, 20, 11-21.[CrossRef] [PubMed]
|
|
[38]
|
Serge, S., Davis, S., & Jay, T. M. (2000). Plasticity at Hippocampal to Prefrontal Cortex Synapses: Dual Roles in Working Memory and Consolidation. Hippocampus, 10, 438-446.[CrossRef]
|
|
[39]
|
Siapas, A. G., & Wilson, M. A. (1998). Coordinated Interactions between Hippocampal Ripples and Cortical Spindles during Slow-Wave Sleep. Neuron, 21, 1123-1128.[CrossRef]
|
|
[40]
|
Sigurdsson, T., Stark, K. L., Karayiorgou, M. et al. (2010). Impaired Hippocampal-Prefrontal Synchrony in a Genetic Mouse Model of Schizophrenia. Nature, 464, 763-767.[CrossRef] [PubMed]
|
|
[41]
|
Wang, M., Yang, Y., Wang, C. J. et al. (2013). NMDA Receptors Subserve Persistent Neuronal Firing during Working Memory in Dorsolateral Prefrontal Cortex. Neuron, 77, 736-749.[CrossRef] [PubMed]
|
|
[42]
|
Watson, D. J., Loiseau, F., Ingallinesi, M. et al. (2012). Selective Blockade of Dopamine D3 Receptors Enhances While D2 Receptor Antagonism Impairs Social Novelty Discrimination and Novel Object Recognition in Rats: A Key Role for the Prefrontal Cortex. Neuropsychopharmacology, 37, 770-786.[CrossRef] [PubMed]
|
|
[43]
|
Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F. et al. (2011). Neocortical Excitation/Inhibition Balance in Information Processing and Social Dysfunction. Nature, 477, 171-178.[CrossRef] [PubMed]
|
|
[44]
|
Zola, S. M., Squire, L. R., Teng, E. et al. (2000). Impaired Recognition Memory in Monkeys after Damage Limited to the Hippocampal Region. The Journal of Neuroscience, 20, 451-463.[CrossRef]
|
|
[45]
|
Zola-Morgan, S., & Squire, L. R. (1985). Medial Temporal Lesions in Monkeys Impair Memory on a Variety of Tasks Sensitive to Human Amnesia. Behavioral Neuroscience, 99, 22-34.[CrossRef]
|