三个数字集生成的 Moran 测度无穷正交集的存在性
The Existence of Infinite Orthogonal Sets of Moran Measures with Three-Element Digit Sets
DOI: 10.12677/PM.2023.132039, PDF, HTML,   
作者: 熊婷:福建师范大学数学与统计学院,福建 福州
关键词: 指数正交基Moran 测度谱测度Exponential Orthogonal Basis Moran Measure Spectral Measure
摘要: 假设对任意的 n ≥ 1整数 Pn > 1且 Dn ={ 0,an,bn} ⊂ℤ其中 an < bn < pn。该文主要研究由整数序列 {pn}n=1和数字集序列{Dn}n=1生成的 Moran 测度的无穷指数正交集的存在性,得到无穷卷积μ具有无穷指数正交集的充要条件,这为构造此函数空间的谱提供了很好的思路。
Abstract: For n ≥ 1, let Pn > 1 and Dn ={ 0,an,bn} ⊂ℤ, where an < bn < pn. In this paper we study the existence of infinite orthogonal exponential sets of moran measures which is generated by the sequence of integers {pn}n=1 and the sequence of number sets {Dn}n=1. We obtain the necessary and sufficient conditions for infinite convolution μ to have infinite orthogonal exponential sets, this provides a good idea for constructing the spectrum of this function space.
文章引用:熊婷. 三个数字集生成的 Moran 测度无穷正交集的存在性[J]. 理论数学, 2023, 13(2): 354-363. https://doi.org/10.12677/PM.2023.132039

参考文献

[1] Fuglede, B. (1974) Commuting Self-Adjoint Partial Differential Operators and a Group Theoretic Problem. Journal of Functional Analysis, 16, 101-121. [Google Scholar] [CrossRef
[2] Jorgensen, P.E.T. and Pedersen, S. (1998) Dense Analytic Subspaces in Fractall L2-Spaces. Journal d'Analyse Mathematique, 75, 185-228. [Google Scholar] [CrossRef
[3] An, L.X. and He, X.G. (2014) A Class of Spectral Moran Measures. Journal of Functional Analysis, 266, 343-354. [Google Scholar] [CrossRef
[4] An, L.X., He, X.G. and Li, H.X. (2015) Spectrality of Infinite Bernoulli Convolutions. Journal of Functional Analysis, 269, 1571-1590. [Google Scholar] [CrossRef
[5] An, L.X., He, L. and He, X.G. (2019) Spectrality and Non-Spectrality of the Riesz Product Measures with Three Elements in Digit Sets. Journal of Functional Analysis, 277, 255-278. [Google Scholar] [CrossRef
[6] An, L.X., Fu, X.Y. and Lai, C.K. (2019) On Spectral Cantor-Moran Measures and a Variant of Bourgain's Sum of Sine Problem. Advances in Mathematics, 349, 84-124.[CrossRef
[7] Dutkay, D.E. and Jorgensen, P.E.T. (2012) Fourier Duality for Fractal Measures with Affine Scales. Mathematics of Computation, 81, 2253-2273. [Google Scholar] [CrossRef
[8] Dutkay, D.E., Haussermann, J. and Lai, C.K. (2019) Hadamard Triples Generate Self-Affine Spectral Measures. Transactions of the American Mathematical Society, 371, 1439-1481. [Google Scholar] [CrossRef
[9] Ding, D.X. (2017) Spectral Property of Certain Fractal Measures. Journal of Mathematical Analysis and Applications, 451, 623-628. [Google Scholar] [CrossRef
[10] Deng, Q.R. (2014) Spectrality of One Dimensional Self-Similar Measures with Consecutive Digits. Journal of Mathematical Analysis and Applications, 409, 331-346. [Google Scholar] [CrossRef
[11] Wang, Z.Y., Dong, X.H. and Liu, Z.S. (2018) Spectrality of Certain Moran Measures with Three-Element Digit Sets. Journal of Mathematical Analysis and Applications, 459, 743-752.[CrossRef
[12] Hu, T.Y. and Lau, K.S. (2008) Spectral Property of the Bernoulli Convolutions. Advances in Mathematics, 219, 554-567. [Google Scholar] [CrossRef
[13] Strichartz, R.S. (2006) Convergence of Mock Fourier Series. Journal d'Analyse Mathematique, 99, 333-353. [Google Scholar] [CrossRef
[14] Wang, Z.Y., Wang, Z.M., Dong, X.H. and Zhang, P.F. (2018) Orthogonal Exponential Func- tions of Self-Similar Measures with Consecutive Digits in R. Journal of Mathematical Analysis and Applications, 467, 1148-1152.[CrossRef