简单闭凸曲线曲率积分不等式的递推关系
Recurrence Relation of Curvature Integral Inequalities for Simple Closed Convex Curves
摘要: 本文主要研究平面上简单闭凸曲线的曲率积分不等式。利用单位速率外法向流对Green-Osher的结果进行了简化证明,发现了曲率积分不等式高阶和低阶情况的一个递推关系,对以前的结果进行了推广,并且发现了一个特殊的函数。
Abstract:
In this paper, we mainly study the curvature integral inequality of simple closed convex curves on the plane. We use the unit-speed outward normal flow to simplify the proof of Green-Osher's results, find a recurrence relationship between the high-order and low-order cases of the curvature integral inequality, generalize the previous results,
and find a special function.
参考文献
|
[1]
|
Gage, M.E. (1983) An Isoperimetric Inequality with Application to Shortening. Duke Mathematical Journal, 50, 1225-1229. [Google Scholar] [CrossRef]
|
|
[2]
|
马磊,曾春娜.关于曲率积分不等式得注记[J].数学杂志,2014,34(5): 925-930.
|
|
[3]
|
Gao, L.Y., Pan, S.L. and Tsai, D.-H. (2021) On an Area-Preserving Inverse Curvature Flow of Convex Closed Plane Curve. Journal of Functional Analysis, 280, Article ID: 108931. [Google Scholar] [CrossRef]
|
|
[4]
|
潘生亮,唐学远,汪小玉.Gage等周不等式的加强形式[J].数学年刊,2008,29A(3): 301-306.
|
|
[5]
|
Green, M. and Osher, S. (1999) Steiner Polnomials, Wulff Flow, and Some New Isoperimetric Inequalities for Convex Plane Curves. The Asian Journal of Mathematics, 3, 659-676. [Google Scholar] [CrossRef]
|