|
[1]
|
Bos, S., Vos, R., Van Raemdonck, D.E., et al. (2020) Survival in Adult Lung Transplantation: Where Are We in 2020? Current Opinion in Organ Transplantation, 25, 268-273. [Google Scholar] [CrossRef]
|
|
[2]
|
Kao, C.C. and Parulekar, A.D. (2019) Postoperative Man-agement of Lung Transplant Recipients. Journal of Thoracic Disease, 11, S1782-S1788. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Akimova, T., Zhang, T., Christensen, L.M., et al. (2021) Obesi-ty-Related IL-18 Impairs T-Regulatory Cell Function and Promotes Lung Ischemia-Reperfusion Injury. American Jour-nal of Respiratory and Critical Care Medicine, 204, 1060-1074. [Google Scholar] [CrossRef]
|
|
[4]
|
Liu, C., Yin, Z., Feng, T., et al. (2021) An Integrated Network Pharmacology and RNA-Seq Approach for Exploring the Preventive Effect of Lonicerae japonicae flos on LPS-Induced Acute Lung Injury. Journal of Ethnopharmacology, 264, Article ID: 113364. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
He, Y.Q., Zhou, C.C., Yu, L.Y., et al. (2021) Natural Product De-rived Phytochemicals in Managing Acute Lung Injury by Multiple Mechanisms. Pharmacological Research, 163, Article ID: 105224. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Christie, J.D., Carby, M., Bag, R., et al. (2005) Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part II: Definition. A Consensus Statement of the Interna-tional Society for Heart and Lung Transplantation. The Journal of Heart and Lung Transplantation, 24, 1454-1459. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hamilton, B.C., Kukreja, J., Ware, L.B., et al. (2017) Protein Biomarkers Associated with Primary Graft Dysfunction Following Lung Transplantation. American Journal of Physiol-ogy Lung Cellular and Molecular Physiology, 312, L531-L541. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fiser, S.M., Kron, I.L., Mclendon Long, S., et al. (2001) Early Intervention after Severe Oxygenation Index Elevation Improves Survival Following Lung Transplantation. The Journal of Heart and Lung Transplantation, 20, 631-636. [Google Scholar] [CrossRef]
|
|
[9]
|
Huang, Y., Xiao, Y., Zhang, X., et al. (2021) The Emerging Roles of Tripartite Motif Proteins (TRIMs) in Acute Lung Injury. Journal of Immunology Research, 2021, Article ID: 1007126. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Snell, G.I., Yusen, R.D., Weill, D., et al. (2017) Report of the ISHLT Working Group on Primary Lung Graft Dysfunction, Part I: Definition and Grading-A 2016 Consensus Group Statement of the International Society for Heart and Lung Transplantation. The Journal of Heart and Lung Transplanta-tion, 36, 1097-1103. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Porteous, M.K. and Lee, J.C. (2017) Primary Graft Dysfunction after Lung Transplantation. Clinics in Chest Medicine, 38, 641-654. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mulvihill, M.S., Gulack, B.C., Ganapathi, A.M., et al. (2017) The Association of Donor Age and Survival Is Independent of Ischemic Time Following Deceased Donor Lung Transplanta-tion. Clinical Transplantation, 31, e12993. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Roesel, M.J., Sharma, N.S., Schroeter, A., et al. (2022) Primary Graft Dys-function: The Role of Aging in Lung Ischemia-Reperfusion Injury. Frontiers in Immunology, 13, Article ID: 891564. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lowery, E.M., Kuhlmann, E.A., Mahoney, E.L., et al. (2014) Heavy Alcohol Use in Lung Donors Increases the Risk for Primary Graft Dysfunction. Alcoholism, Clinical and Exper-imental Research, 38, 2853-2861. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zych, B., Popov, A.F., Amrani, M., et al. (2012) Lungs from Donation af-ter Circulatory Death Donors: An Alternative Source to Brain-Dead Donors? Midterm Results at a Single Institution. European Journal of Cardio-Thoracic Surgery, 42, 542-549. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sabashnikov, A., Patil, N.P., Popov, A.F., et al. (2016) Long-Term Re-sults after Lung Transplantation Using Organs from Circulatory Death Donors: A Propensity Score-Matched Analysis. European Journal of Cardio-Thoracic Surgery, 49, 46-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Diamond, J.M., Lee, J.C., Kawut, S.M., et al. (2013) Clinical Risk Factors for Primary Graft Dysfunction after Lung Transplanta-tion. American Journal of Respiratory and Critical Care Medicine, 187, 527-534. [Google Scholar] [CrossRef]
|
|
[18]
|
Anderson, M.R., Udupa, J.K., Edwin, E., et al. (2019) Adipose Tissue Quantification and Primary Graft Dysfunction after Lung Transplantation: The Lung Transplant Body Composi-tion Study. The Journal of Heart and Lung Transplantation, 38, 1246-1256. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lederer, D.J., Kawut, S.M., Wickersham, N., et al. (2011) Obe-sity and Primary Graft Dysfunction after Lung Transplantation: The Lung Transplant Outcomes Group Obesity Study. American Journal of Respiratory and Critical Care Medicine, 184, 1055-1061. [Google Scholar] [CrossRef]
|
|
[20]
|
Chandrashekaran, S., Keller, C.A., Kremers, W.K., et al. (2015) Weight Loss Prior to Lung Transplantation Is Associated with Improved Survival. The Journal of Heart and Lung Transplantation, 34, 651-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chacon-Alberty, L., Ye, S., Daoud, D., et al. (2021) Analysis of Sex-Based Differences in Clinical and Molecular Responses to Ischemia Reperfusion after Lung Transplantation. Respir-atory Research, 22, 318. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bastarache, J.A., Diamond, J.M., Kawut, S.M., et al. (2012) Postoperative Estradiol Levels Associate with Development of Primary Graft Dysfunction in Lung Transplantation Pa-tients. Gender Medicine, 9, 154-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Porteous, M.K., Ky, B., Kirkpatrick, J.N., et al. (2016) Diastolic Dysfunction Increases the Risk of Primary Graft Dysfunction after Lung Transplant. American Journal of Respiratory and Critical Care Medicine, 193, 1392-1400. [Google Scholar] [CrossRef]
|
|
[24]
|
Hardziyenka, M., Campian, M.E., Verkerk, A.O., et al. (2012) Electrophysiologic Remodeling of the Left Ventricle in Pressure Overload-Induced Right Ventricular Failure. Journal of the American College of Cardiology, 59, 2193-2202. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Jörgensen, K., Houltz, E., Westfelt, U., et al. (2003) Effects of Lung Volume Reduction Surgery on Left Ventricular Diastolic Filling and Dimensions in Patients with Severe Emphysema. Chest, 124, 1863-1870. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, Y., Liu, Y., Su, L., et al. (2014) Recipient-Related Clinical Risk Factors for Primary Graft Dysfunction after Lung Transplantation: A Systematic Review and Meta-Analysis. PLOS ONE, 9, e92773. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Whitson, B.A., Nath, D.S., Johnson, A.C., et al. (2006) Risk Factors for Primary Graft Dysfunction after Lung Transplantation. The Journal of Thoracic and Cardiovascular Surgery, 131, 73-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Vandervelde, C.M., Vos, R., Vanluyten, C., et al. (2022) Impact of Anastomosis Time during Lung Transplantation on Primary Graft Dysfunction. American Journal of Transplantation, 22, 1418-1429. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Pena, J.J., Bottiger, B.A. and Miltiades, A.N. (2020) Periopera-tive Management of Bleeding and Transfusion for Lung Transplantation. Seminars in Cardiothoracic and Vascular An-esthesia, 24, 74-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Said, S.A., Okamoto, T., Nowacki, A.S., et al. (2021) The Effect of Blood Transfusion in Lung Donors on Recipient Survival. The Annals of Thoracic Surgery, 112, 1109-1117. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Borders, C.F., Suzuki, Y., Lasky, J., et al. (2017) Massive Donor Transfusion Potentially Increases Recipient Mortality after Lung Transplantation. The Journal of Thoracic and Cardiovascular Surgery, 153, 1197-1203.e2. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Syrett, A.J. and Huang, A. (2020) Transfusion and Primary Graft Dysfunction after Lung Transplantation: All about the Ratio? Journal of Cardiothoracic and Vascular Anesthesia, 34, 3033-3035. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Grimm, J.C., Valero, V., Kilic, A., et al. (2015) Association be-tween Prolonged Graft Ischemia and Primary Graft Failure or Survival Following Lung Transplantation. JAMA Surgery, 150, 547-553. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Bharat, A. (2015) Prolonged Lung Allograft Ischemia and Post-transplant Outcome. JAMA Surgery, 150, 554. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chacon-Alberty, L., Ye, S., Elsenousi, A., et al. (2022) Effect of Intraoperative Support Mode on Circulating Inflammatory Biomarkers after Lung Transplantation Surgery. Artificial Or-gans. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Loor, G., Huddleston, S., Hartwig, M., et al. (2022) Effect of Mode of Intraoperative Support on Primary Graft Dysfunction after Lung Transplant. The Journal of Thoracic and Cardiovas-cular Surgery, 164, 1351-1361.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kachulis, B., Mitrev, L. and Jordan, D. (2017) Intraoperative An-esthetic Management of Lung Transplantation Patients. Best Practice & Research Clinical Anaesthesiology, 31, 261-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Niroomand, A., Qvarnström, S., Stenlo, M., Malmsjö, M., et al. (2022) The Role of Mechanical Ventilation in Primary Graft Dysfunction in the Postoperative Lung Transplant Recipient: A Single Center Study and Literature Review. Acta Anaesthesiologica Scandinavica, 66, 483-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Beer, A., Reed, R.M., Bölükbas, S., et al. (2014) Mechanical Ventilation after Lung Transplantation. An International Survey of Practices and Preferences. Annals of the American Thoracic Soci-ety, 11, 546-553. [Google Scholar] [CrossRef]
|
|
[40]
|
Oishi, H., Noda, M., Sado, T., et al. (2020) Ex Vivo Lung CT Findings May Predict the Outcome of the Early Phase after Lung Transplantation. PLOS ONE, 15, e0233804. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Himebauch, A.S., Wong, W., Wang, Y., et al. (2021) Preopera-tive Echocardiographic Parameters Predict Primary Graft Dysfunction Following Pediatric Lung Transplantation. Pediat-ric Transplantation, 25, e13858. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Fessler, J., Vallée, A., Guirimand, A., et al. (2022) Blood Lactate During Double-Lung Transplantation: A Predictor of Grade-3 Primary Graft Dysfunction. Journal of Cardiothoracic and Vas-cular Anesthesia, 36, 794-804. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Mazo, C., Borgatta, B., Pont, T., et al. (2018) Procalcitonin Accu-rately Predicts Lung Transplant Adults with Low Risk of Pulmonary Graft Dysfunction and Intensive Care Mortality. Journal of Critical Care, 44, 142-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kanou, T., Nakahira, K., Choi, A.M., et al. (2021) Cell-Free DNA in Human ex Vivo Lung Perfusate as a Potential Biomarker to Predict the Risk of Primary Graft Dysfunction in Lung Transplantation. The Journal of Thoracic and Cardiovascular Surgery, 162, 490-499.e2. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chacon-Alberty, L., Kanchi, R.S., Ye, S., et al. (2022) Plasma Protein Biomarkers for Primary Graft Dysfunction after Lung Transplantation: A Single-Center Cohort Analysis. Scien-tific Reports, 12, Article No. 16137. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Bertani, A., Miceli, V., De Monte, L., et al. (2021) Donor Pre-conditioning with Inhaled Sevoflurane Mitigates the Effects of Ischemia-Reperfusion Injury in a Swine Model of Lung Transplantation. BioMed Research International, 2021, Article ID: 6625955. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
De Conno, E., Steurer, M.P., Wittlinger, M., et al. (2009) Anesthet-ic-Induced Improvement of the Inflammatory Response to One-Lung Ventilation. Anesthesiology, 110, 1316-1326. [Google Scholar] [CrossRef]
|
|
[48]
|
Ghaidan, H., Stenlo, M., Niroomand, A., et al. (2022) Re-duction of Primary Graft Dysfunction Using Cytokine Adsorption during Organ Preservation and after Lung Transplan-tation. Nature Communications, 13, 4173. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Saito, M., Chen-Yoshikawa, T.F., Takahashi, M., et al. (2020) Protective Effects of a Hydrogen-Rich Solution during Cold Ischemia in Rat Lung Transplantation. The Journal of Tho-racic and Cardiovascular Surgery, 159, 2110-2118. [Google Scholar] [CrossRef] [PubMed]
|