|
[1]
|
Cazenave, T. (2003) Semilinear Schrodinger Equations (Courant Lecture Notes in Mathematics,Vol. 10). New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI.
|
|
[2]
|
Feng, B. and Yuan, X. (2015) On the Cauchy Problem for the Schrodinger-Hartree Equation. Evolution Equations and Control Theory, 4, 431-445. [Google Scholar] [CrossRef]
|
|
[3]
|
Feng, B. and Zhang, H. (2018) Stability of Standing Waves for the Fractional Schrodinger-Hartree Equation. Journal of Mathematical Analysis and Applications, 460, 352-364. [Google Scholar] [CrossRef]
|
|
[4]
|
Pekar, S.I. (1954) Untersuchung uber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin.
|
|
[5]
|
Lieb, E.H. (1977) Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation. Studies in Applied Mathematics, 57, 93-105. [Google Scholar] [CrossRef]
|
|
[6]
|
Penrose, R. (1996) On Gravity's Role in Quantum State Reduction. General Relativity and
Gravitation, 28, 581-600. [Google Scholar] [CrossRef]
|
|
[7]
|
Chen, Z., Shen, Z. and Yang, M. (2017) Instability of Standing Waves for a Generalized
Choquard Equation with Potential. Journal of Mathematical Physics, 58, Article ID: 011504.[CrossRef]
|
|
[8]
|
Du, L., Gao, F. and Yang, M. (2022) Existence and Qualitative Analysis for Nonlinear Weighted Choquard Equations. https://arxiv.org/abs/1810.11759
|
|
[9]
|
Feng, B. (2018) On the Blow-Up Solutions for the Fractional Nonlinear Schrodinger Equation with Combined Power-Type Nonlinearities. Communications on Pure and Applied Analysis, 17, 1785-1804. [Google Scholar] [CrossRef]
|
|
[10]
|
Feng, B., Liu, J., Niu, H. and Zhang, B. (2020) Strong Instability of Standing Waves for a Fourth-Order Nonlinear Schrodinger Equation with the Mixed Dispersions. Nonlinear Analysis, 196, Article ID: 111791. [Google Scholar] [CrossRef]
|
|
[11]
|
Feng, B. and Wang, Q. (2021) Strong Instability of Standing Waves for the Nonlinear
Schrodinger Equation in Trapped Dipolar Quantum Gases. Journal of Dynamics Differential
Equations, 33, 1989-2008.[CrossRef]
|
|
[12]
|
Feng, B., Chen, R. and Liu, J. (2021) Blow-Up Criteria and Instability of Normalized Standing Waves for the Fractional Schrodinger-Choquard Equation. Advances in Nonlinear Analysis, 10,
311-330. [Google Scholar] [CrossRef]
|
|
[13]
|
Feng, B. and Zhu, S. (2021) Stability and Instability of Standing Waves for the Fractional Nonlinear Schrodinger Equations. Journal of Differential Equations, 292, 287-324. [Google Scholar] [CrossRef]
|
|
[14]
|
Wang, Y. and Feng, B. (2019) Sharp Thresholds of Blow-Up and Global Existence for the
Schrodinger Equation with Combined Power-Type and Choquard-Type Nonlinearities. Bound-
ary Value Problems, 2019, Article No. 195.[CrossRef]
|
|
[15]
|
Zhang, J. and Zhu, S. (2017) Stability of Standing Waves for the Nonlinear Fractional
Schrodinger Equation. Journal of Dynamics and Differential Equations, 29, 1017-1030.[CrossRef]
|
|
[16]
|
Berestycki, H. and Cazenave, T. (1981) Instabilite des etats stationaires dans les euations de Schrodinger et de Klein-Gordon non lineires. Comptes Rendus de l'Academie des Sciences—Series I, 293, 489-492. https://zbmath.org/0492.35010
|
|
[17]
|
Le Coz, S. (2008) A note on Berestycki-Cazenave's Classical Instability Result for Nonlinear Schrodinger Equations. Advanced Nonlinear Studies, 8, 455-463. [Google Scholar] [CrossRef]
|
|
[18]
|
Feng, B., Chen, R. and Wang, Q. (2020) Instability of Standing Waves for the Nonlinear
Schrodinger-Poisson Equation in the L2-Critical Case. Journal of Dynamics and Differential
Equations, 32, 1357-1370.[CrossRef]
|
|
[19]
|
Weinstein, M.I. (1983) Nonlinear Schrodinger Equations and Sharp Interpolation Estimates. Communications in Mathematical Physics, 87, 567-576. [Google Scholar] [CrossRef]
|
|
[20]
|
Ohta, M. (1995) Blow-Up Solutions and Strong Instability of Standing Waves for the Generalized Davey-Stewartson System in R2. Annales de l'Institut Henri Poincare-Physique Theorique,
63, 111-117. https://eudml.org/doc/76684
|
|
[21]
|
Chen, J. and Guo, B. (2007) Strong Instability of Standing Waves for a Nonlocal Schrodinger Equation. Physica D: Nonlinear Phenomena, 227, 142-148. [Google Scholar] [CrossRef]
|
|
[22]
|
Shi, C. (2022) Existence of Stable StandingWaves for the Nonlinear Schrodinger Equation with Mixed Power-Type and Choquard-Type Nonlinearities. AIMS Mathematics, 7, 3802-3825. [Google Scholar] [CrossRef]
|
|
[23]
|
Brezis, H. and Lieb, E.H. (1983) A Relation between Pointwise Convergence of Functions and Convergence of Functionals. Proceedings of the American Mathematical Society, 88, 486-493. [Google Scholar] [CrossRef]
|
|
[24]
|
Lieb, E.H. (1983) Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities. Annals of Mathematics, 118, 349-374. [Google Scholar] [CrossRef]
|