|
[1]
|
Dostal, D., Glaser, S. and Baudino, T.A. (2015) Cardiac Fibroblast Physiology and Pathology. Comprehensive Physi-ology, 5, 887-909. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Frangogiannis, N.G. (2021) Cardiac Fibrosis. Car-diovascular Research, 117, 1450-1488. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Czubryt, M.P. and Hale, T.M. (2021) Cardiac Fibrosis: Pathobiology and Therapeutic Targets. Cell Signaling, 85, Article ID: 110066. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Venugopal, H., et al. (2022) Properties and Functions of Fi-broblasts and Myofibroblasts in Myocardial Infarction. Cells, 11, 1386. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Daseke, M.N., et al. (2020) Cardiac Fibroblast Activation during Myocardial Infarction Wound Healing: Fibroblast Polarization after MI. Matrix Biology, 91-92, 109-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Talman, V. and Ruskoaho, H. (2016) Cardiac Fibrosis in My-ocardial Infarction-From Repair and Remodeling to Regeneration. Cell and Tissue Research, 365, 563-581. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tallquist, M.D. (2020) Cardiac Fibroblast Diversity. Annual Re-view of Physiology, 82, 63-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kurose, H. (2021) Cardiac Fibrosis and Fibroblasts. Cells, 10, 1716. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Akhade, V.S., Pal, D. and Kanduri, C. (2017) Long Noncoding RNA: Genome Organization and Mechanism of Action. Advances in Experimental Medicine and Biology, 1008, 47-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hu, H.H., et al. (2018) New Insights into TGF-β/Smad Signaling in Tissue Fibrosis. Chemico-Biological Interactions, 292, 76-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Tao, H., et al. (2017) LncRNA GAS5 Controls Cardiac Fibroblast Activation and Fibrosis by Targeting miR-21 via PTEN/MMP-2 Signaling Pathway. Toxicology, 386, 11-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lu, J., et al. (2019) Long Noncoding RNA GAS5 Attenuates Car-diac Fibroblast Proliferation in Atrial Fibrillation via Repressing ALK5. European Review for Medical and Pharma-cological Sciences, 23, 7605-7610.
|
|
[13]
|
Tao, H., et al. (2020) MeCP2 Inactivation of LncRNA GAS5 Triggers Cardiac Fibroblasts Activation in Cardiac Fibrosis. Cell Signaling, 74, Article ID: 109705. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
She, Q., et al. (2020) DNMT1 Methylation of LncRNA GAS5 Leads to Cardiac Fibroblast Pyroptosis via Affecting NLRP3 Axis. Inflammation, 43, 1065-1076. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Sun, J., et al. (2020) LncRNA FAF Inhibits Fibrosis Induced by Angiotensinogen II via the TGFβ1-P-Smad2/3 Signalling by Targeting FGF9 in Cardiac Fibroblasts. Biochemical and Biophysical Research Communications, 521, 814-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
杨帆, 等. LncRNA Kcnq1ot1/miR-214-3p/caspase-1通路调控高糖处理的心脏成纤维细胞焦亡[J]. 现代生物医学进展, 2021, 21(10): 1811-1817.
|
|
[17]
|
蔡磊, 尹春颖, 尹德春. LncRNA 1700020I14Rik调控心脏成纤维细胞活化增殖和纤维化的实验研究[J]. 中西医结合心脑血管病杂志, 2020, 18(14): 2234-2238.
|
|
[18]
|
王泽, 郭志祥, 葛圣林. 长链非编码RNA NRON促进NFATc3磷酸化减轻心房纤维化的机制研究[J]. 安徽医科大学学报, 2020, 55(11): 1740-1745, 1753.
|
|
[19]
|
Qu, X., et al. (2017) MIAT Is a Pro-Fibrotic Long Non-Coding RNA Governing Cardiac Fibrosis in Post-Infarct Myocardium. Scientific Reports, 7, Article No. 42657. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yao, L., et al. (2020) LncRNA MIAT/miR-133a-3p Axis Regulates Atrial Fibrillation and Atrial Fibrillation-Induced Myocardial Fibrosis. Molecular Biology Reports, 47, 2605-2617. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
邢佳侬, 等. LncRNA MIAT靶向调节miR-128-3p对心房颤动大鼠心室重构和心肌纤维化的影响[J]. 天津医药, 2022, 50(9): 932-937.
|
|
[22]
|
Zhou, J., Zhou, Y. and Wang, C.X. (2019) LncRNA-MIAT Regulates Fibrosis in Hypertrophic Cardiomyopathy (HCM) by Mediating the Expression of miR-29a-3p. Journal of Cellular Biochemistry, 120, 7265-7275. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chuang, T.D., et al. (2020) Mechanism Underlying Increased Cardiac Ex-tracellular Matrix Deposition in Perinatal Nicotine-Exposed Offspring. The American Journal of Physiology-Heart and Circulatory Physiology, 319, H651-H660. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Aonuma, T., et al. (2022) MiR-150 Attenuates Maladaptive Cardiac Remodeling Mediated by Long Noncoding RNA MIAT and Directly Represses Profibrotic Hoxa4. Circulation: Heart Failure, 15, e008686. [Google Scholar] [CrossRef]
|
|
[25]
|
Zhang, X., et al. (2019) The lncRNA, H19 Mediates the Protective Effect of Hypoxia Postconditioning against Hypoxia-Reoxygenation Injury to Senescent Cardiomyocytes by Targeting microRNA-29b-3p. Shock, 52, 249-256. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhuang, Y., et al. (2021) LncRNA-H19 Drives Cardiomyocyte Senescence by Targeting miR-19a/socs1/p53 Axis. Frontiers in Pharmacology, 12, Article ID: 631835. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Huang, Z.W., et al. (2017) Long Noncoding RNA H19 Acts as a Competing Endogenous RNA to Mediate CTGF Expression by Sponging miR-455 in Cardiac Fibrosis. DNA and Cell Biology, 36, 759-766. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tao, H., et al. (2016) Long Noncoding RNA H19 Controls DUSP5/ERK1/2 Axis in Cardiac Fibroblast Proliferation and Fibrosis. Cardiovascular Pathology, 25, 381-389. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Choong, O.K., et al. (2019) Hypoxia-Induced H19/YB-1 Cas-cade Modulates Cardiac Remodeling after Infarction. Theranostics, 9, 6550-6567. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hao, K., et al. (2019) LncRNA-Safe Contributes to Cardiac Fibrosis through Safe-Sfrp2-HuR Complex in Mouse Myocardial Infarction. Theranostics, 9, 7282-7297. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Cheng, J., et al. (2022) Long Noncoding RNAs Testis Development Re-lated Gene 1 Aggravates Transforming Growth Factor-β1-Induced Fibrogenesis and Inflammatory Response of Cardiac Fibroblasts via miR-605-3p/Tumor Necrosis Factor Receptor Superfamily-21 Axis. Journal of Cardiovascular Pharmacology, 79, 296-303. [Google Scholar] [CrossRef]
|
|
[32]
|
Liang, H., et al. (2018) LncRNA PFL Contributes to Cardiac Fibrosis by Acting as a Competing Endogenous RNA of let-7d. Theranostics, 8, 1180-1194. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Micheletti, R., et al. (2017) The Long Noncoding RNA Wisper Controls Cardiac Fibrosis and Remodeling. Science Translational Medicine, 9, eaai9118. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Cao, F., et al. (2019) LncRNA PVT1 Regulates Atrial Fibrosis via miR-128-3p-SP1-TGF-β1-Smad Axis in Atrial Fibrillation. Molecular Medicine, 25, 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Lang, M., et al. (2021) LncRNA MHRT Promotes Cardiac Fi-brosis via miR-3185 Pathway Following Myocardial Infarction. International Heart Journal, 62, 891-899. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Piccoli, M.T., et al. (2017) Inhibition of the Cardiac Fibroblast-Enriched lncRNA Meg3 Prevents Cardiac Fibrosis and Diastolic Dysfunction. Circulation Research, 121, 575-583. [Google Scholar] [CrossRef]
|
|
[37]
|
孔启航, 等. 长链非编码RNA Dnm3os在心肌成纤维细胞活化中的作用研究[J]. 生物医学工程学杂志, 2021, 38(3): 574-582.
|
|
[38]
|
Pan, S.C., Cui, H.H. and Qiu, C.G. (2018) HOTAIR Promotes Myocardial Fibrosis through Regulating URI1 Expression via Wnt Pathway. European Re-view for Medical and Pharmacological Sciences, 22, 6983-6990.
|
|
[39]
|
Song, L., et al. (2021) Regulatory Mechanism of LINC00152 on Aggravating Heart Failure through Triggering Fibrosis in an Infarcted Myocardium. Disease Markers, 2021, Article ID: 2607358. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Chen, G., et al. (2020) Lnc-Ang362 Is a Pro-Fibrotic Long Non-Coding RNA Promoting Cardiac Fibrosis after Myocardial Infarction by Suppressing Smad7. Archives of Biochemistry and Biophysics, 685, Article ID: 108354. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wang, X., et al. (2018) Long Noncoding RNA (lncRNA) n379519 Promotes Cardiac Fibrosis in Post-Infarct Myocardium by Targeting miR-30. Medical Science Monitor, 24, 3958-3965. [Google Scholar] [CrossRef]
|
|
[42]
|
Zhang, F., et al. (2021) Long Noncoding RNA Cfast Regulates Cardiac Fibrosis. Molecular Therapy—Nucleic Acids, 23, 377-392. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wang, H., et al. (2020) Long Non-Coding RNA LICPAR Regu-lates Atrial Fibrosis via TGF-β/Smad Pathway in Atrial Fibrillation. Tissue and Cell, 67, Article ID: 101440. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Huang, S., et al. (2019) Long Noncoding RNA MALAT1 Mediates Cardiac Fibrosis in Experimental Postinfarct Myocardium Mice Model. Journal of Cellular Physiology, 234, 2997-3006. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhu, Y., et al. (2018) Long Noncoding RNA TUG1 Promotes Cardiac Fibroblast Transformation to Myofibroblasts via miR-29c in Chronic Hypoxia. Molecular Medicine Reports, 18, 3451-3460. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhang, H., et al. (2021) Long Non-Coding RNA XIST Promotes the Proliferation of Cardiac Fibroblasts and the Accumulation of Extracellular Matrix by Sponging mi-croRNA-155-5p. Experimental and Therapeutic Medicine, 21, 477. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhang, N. and Sun, Y. (2019) LncRNA ROR Facilitates Myocardial Fibrosis in Rats with Viral Myocarditis through Regulating C-Myc Expression. European Review for Medical and Pharmacological Sciences, 23, 10982-10988.
|
|
[48]
|
Jiang, X.Y. and Ning, Q.L. (2014) Expression Profiling of Long Noncoding RNAs and the Dynamic Changes of lncRNA-NR024118 and Cdkn1c in Angiotensin II-Treated Cardiac Fibroblasts. International Journal of Clinical and Experimental Pathology, 7, 1325-1336.
|
|
[49]
|
Huang, Z.P., et al. (2016) Long Non-Coding RNAs Link Extracellular Matrix Gene Expression to Ischemic Cardiomyopathy. Cardiovascular Research, 112, 543-554. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Viereck, J., et al. (2016) Long Noncoding RNA Chast Promotes Cardiac Remodeling. Science Translational Medicine, 8, 326ra22. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Ricketts, S.N. and Qian, L. (2022) The Heart of Cardiac Re-programming: The Cardiac Fibroblasts. The Journal of Molecular and Cellular Cardiology, 172, 90-99. [Google Scholar] [CrossRef] [PubMed]
|