摘要: 在本文我们考虑振幅a属于HÖrmander类

时的拟微分算子T
a在Besov空间上的有界性. 对于0 ≤ ρ ≤ 1, p ≥ 1, 令

如果

且s > m − m
0, 我们证明拟微分算子Ta是Besov空间

到

的有界算子. 这个结果推广了Stein的一个小结果.
Abstract:
In this note, we consider the boundedness of the pseudo-differential operator Ta whose symbol a belongs to HÖrmander class

on Besov spaces.Let 0 ≤ ρ ≤ 1, p ≥ 1

If

and s > m − m
0, then the pseudo-differential operator T
a is bounded from

to

. And our work is to generalize a result of Stein.