|
[1]
|
Wu, Q., Luan, H. and Xiao, F. (2022) Theoretical Design for Zeolite Synthesis. Science China—Chemistry, 65, 1683-1690. [Google Scholar] [CrossRef]
|
|
[2]
|
Tian, Y. and Zhu, G. (2020) Porous Aromatic Frameworks (PAFs). Chemical Reviews, 120, 8934-8986. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chen, J., Abazari, R., Adegoke, K.A., et al. (2022) Met-al-Organic Frameworks and Derived Materials as Photocatalysts for Water Splitting and Carbon Dioxide Reduction. Co-ordination Chemistry Reviews, 469, Article ID: 214664. [Google Scholar] [CrossRef]
|
|
[4]
|
Geng, K., He, T., Liu, R., et al. (2020) Covalent Organic Frame-works: Design, Synthesis, and Functions. Chemical Reviews, 120, 8814-8933. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ebadi Amooghin, A., Sanaeepur, H., Luque, R., et al. (2022) Fluorinated Metal-Organic Frameworks for Gas Separation. Chemical Society Reviews, 51, 7427-7508. [Google Scholar] [CrossRef]
|
|
[6]
|
Wang, Y., Lv, H., Grape, E.S., et al. (2021) A Tunable Multivariate Metal-Organic Framework as a Platform for Designing Photocatalysts. Journal of the American Chemical Society, 143, 6333-6338. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, J., Jing, X., Li, Q., et al. (2020) Bulk COFs and COF Nanosheets for Electrochemical Energy Storage and Conversion. Chemical Society Reviews, 49, 3565-3604. [Google Scholar] [CrossRef]
|
|
[8]
|
Ma, X., Kang, J., Wu, Y., et al. (2022) Recent Advances in Met-al/Covalent Organic Framework-Based Materials for Photoelectrochemical Sensing Applications. Trac-Trends in Analyt-ical Chemistry, 157, Article ID: 116793. [Google Scholar] [CrossRef]
|
|
[9]
|
Song, Y., Sun, Q., Aguila, B., et al. (2019) Opportunities of Cova-lent Organic Frameworks for Advanced Applications. Advanced Science, 6, Article ID: 1801410. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yuan, S., Feng, L., Wang, K., et al. (2018) Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30, Article ID: 1704303. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chen, X., Geng, K., Liu, R., et al. (2020) Covalent Organic Frame-works: Chemical Approaches to Designer Structures and Built-In Functions. Angewandte Chemie-International Edition, 59, 5050-5091. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ding, M., Cai, X. and Jiang, H. (2019) Improving MOF Stability: Approaches and Applications. Chemical Science, 10, 10209-10230. [Google Scholar] [CrossRef]
|
|
[13]
|
Deng, Y., Wang, Y., Xiao, X., et al. (2022) Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks. Small, 18, Article ID: 2202928. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, Y., Karimi, M., Gong, Y., et al. (2021) Integration of Met-al-Organic Frameworks and Covalent Organic Frameworks: Design, Synthesis, and Applications. Matter, 4, 2230-2265. [Google Scholar] [CrossRef]
|
|
[15]
|
Chen, Z., Li, X., Yang, C., et al. (2021) Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Advanced Science, 8, Article ID: 2101883. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhang, F., Sheng, J., Yang, Z., et al. (2018) Rational De-sign of MOF/COF Hybrid Materials for Photocatalytic H2 Evolution in the Presence of Sacrificial Electron Donors. An-gewandte Chemie-International Edition, 57, 12106-12110. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, X., Hu, M., Wang, M., et al. (2019) Novel Nanoarchitecture of Co-MOF-on-TPN-COF Hybrid: Ultralowly Sensitive Bioplatform of Electrochemical Aptasensor toward Ampicillin. Biosensors & Bioelectronics, 123, 59-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sun, W., Tang, X., Yang, Q., et al. (2019) Coordination-Induced Interlinked Covalent- and Metal-Organic-Framework Hybrids for Enhanced Lithium Storage. Advanced Materials, 31, Article ID: 1903176. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, F., Wang, D., Xing, Q., et al. (2019) Design and Syntheses of MOF/COF Hybrid Materials via Postsynthetic Covalent Modification: An Efficient Strategy to Boost the Visi-ble-Light-Driven Photocatalytic Performance. Applied Catalysis B-Environmental, 243, 621-628. [Google Scholar] [CrossRef]
|
|
[20]
|
Cai, M., Li, Y., Liu, Q., et al. (2019) One-Step Construction of Hydrophobic MOFs@COFs Core-Shell Composites for Heterogeneous Selective Catalysis. Advanced Science, 6, Article ID: 1802365. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chen, Y., Yang, D., Shi, B., et al. (2020) In Situ Con-struction of Hydrazone-Linked COF-Based Core-Shell Hetero-Frameworks for Enhanced Photocatalytic Hydrogen Evo-lution. Journal of Materials Chemistry A, 8, 7724-7732. [Google Scholar] [CrossRef]
|
|
[22]
|
Lu, G., Huang, X., Li, Y., et al. (2020) Covalently Integrated Core-Shell MOF@COF Hybrids as Efficient Visible- Light-Driven Photocatalysts for Selective Oxidation of Alcohols. Journal of Energy Chemistry, 43, 8-15. [Google Scholar] [CrossRef]
|
|
[23]
|
Liang, F., Wang, K., Lv, X., et al. (2020) Modular Total Synthe-sis in Reticular Chemistry. Journal of the American Chemical Society, 142, 3069-3076. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Firoozi, M., Rafiee, Z. and Dashtian, K. (2020) New MOF/COF Hybrid as a Robust Adsorbent for Simultaneous Removal of Auramine O and Rhodamine B Dyes. Acs Omega, 5, 9420-9428. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Das, S., Ben, T., Qiu, S., et al. (2020) Two-Dimensional COF-Three-Dimensional MOF Dual-Layer Membranes with Unprecedentedly High H2/CO2 Selectivity and Ultrahigh Gas Permeabilities. ACS Applied Materials & Interfaces, 12, 52899-52907. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wang, Y., Yang, Q., Yi, F., et al. (2021) NH2-UiO-66 Coated with Two-Dimensional Covalent Organic Frameworks: High Stability and Photocatalytic Activity. ACS Applied Materials & Interfaces, 13, 29916-29925. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Niu, Q., Dong, S., Tian, J., et al. (2022) Rational Design of Novel COF/MOF S-Scheme Heterojunction Photocatalyst for Boosting CO2 Reduction at Gas-Solid Interface. ACS Applied Materials & Interfaces, 14, 24299-24308. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chen, C., Xiong, Y., Zhong, X., et al. (2022) Enhancing Photocata-lytic Hydrogen Production via the Construction of Robust Multivariate Ti-MOF/COF Composites. Angewandte Chemie-International Edition, 61, Article ID: 2114071. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, J., Wang, L., Wang, Y., et al. (2022) Covalently Connected Core-Shell NH2-UiO-66@Br-COFs Hybrid Materials for CO2 Capture and I2 Vapor Adsorption. Chemical Engineering Journal, 438, Article ID: 135555. [Google Scholar] [CrossRef]
|
|
[30]
|
Wang, J., Dai, Z., Wang, L., et al. (2023) A Z-Scheme Heterojunc-tion of Porphyrin-Based Core-Shell Zr-MOF@Pro- COF-Br Hybrid Materials for Efficient Visible-Light-Driven CO2 Reduction. Journal of Materials Chemistry A, 11, 2023-2030. [Google Scholar] [CrossRef]
|
|
[31]
|
Peng, Y., Zhao, M., Chen, B., et al. (2018) Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core-Shell Hybrid Materials. Advanced Materials, 30, Article ID: 1705454. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wadhawan, S., Jain, A., Nayyar, J., et al. (2020) Role of Nano-materials as Adsorbents in Heavy Metal Ion Removal from Waste Water: A Review. Journal of Water Process Engi-neering, 33, Article ID: 101038. [Google Scholar] [CrossRef]
|
|
[33]
|
Sholl, D. and Lively, R. (2016) Seven Chemical Separations to Change the World. Nature, 532, 435-437. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Li, W., Shi, W., Hu, Z., et al. (2020) Fabrication of Magnetic Fe3O4@metal Organic framework@covalent Organic Framework Composite and Its Selective Separation of Trace Copper. Applied Surface Science, 530, Article ID: 147254. [Google Scholar] [CrossRef]
|
|
[35]
|
Koros, W. and Zhang, C. (2017) Materials for Next-Generation Molecularly Selective Synthetic Membranes. Nature Materials, 16, 289-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Garzon-Tovar, L., Perez-Carvajal, J., Yazdi, A., et al. (2019) A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. Angewandte Chemie-International Edition, 58, 9512-9516. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, F., Wang, X., Liu, H., et al. (2019) Recent Advances and Ap-plications of Semiconductor Photocatalytic Technology. Applied Sciences-Basel, 9, 2489. [Google Scholar] [CrossRef]
|
|
[38]
|
Liu, J., Ma, N., Wu, W., et al. (2020) Recent Progress on Photocatalytic Heterostructures with Full Solar Spectral Responses. Chemical Engineering Journal, 393, Article ID: 124719. [Google Scholar] [CrossRef]
|
|
[39]
|
Li, Z., Guo, J., Wan, Y., et al. (2022) Combining Metal-Organic Frameworks (MOFs) and Covalent-Organic Frameworks (COFs): Emerging Opportunities for New Materials and Ap-plications. Nano Research, 15, 3514-3532. [Google Scholar] [CrossRef]
|
|
[40]
|
Gong, E., Ali, S., Hiragond, C.B., et al. (2022) Solar Fuels: Re-search and Development Strategies to Accelerate Photocatalytic CO2 Conversion into Hydrocarbon Fuels. Energy & En-vironmental Science, 15, 880-937. [Google Scholar] [CrossRef]
|
|
[41]
|
Wang, L., Mao, J., Huang, G., et al. (2022) Configuration of Het-ero-Framework via Integrating MOF and Triazine- Containing COF for Charge-Transfer Promotion in Photocatalytic CO2 Reduction. Chemical Engineering Journal, 446, Article ID: 137011. [Google Scholar] [CrossRef]
|
|
[42]
|
Tajik, S., Beitollahi, H., Nejad, F.G., et al. (2021) Recent Develop-ments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Industrial & Engineering Chemistry Research, 60, 1112- 1136. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, W., Liu, S., Fu, Y., et al. (2022) Recent Advances in Photoelectrocatalysis for Environmental Applications: Sensing, Pollutants Re-moval and Microbial Inactivation. Coordination Chemistry Reviews, 454, Article ID: 214341. [Google Scholar] [CrossRef]
|
|
[44]
|
Yuan, R., Li, H. and He, H. (2021) Recent Advances in Met-al/Covalent Organic Framework-Based Electrochemical Aptasensors for Biosensing Applications. Dalton Transactions, 50, 14091-14104. [Google Scholar] [CrossRef]
|
|
[45]
|
Zhou, N., Ma, Y., Hu, B., et al. (2019) Construction of Ce-MOF@COF Hybrid Nanostructure: Label-Free Aptasensor for the Ultrasensitive Detection of Oxytetracycline Resi-dues in Aqueous Solution Environments. Biosensors & Bioelectronics, 127, 92-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Cui, X., Dong, H., Chen, S., et al. (2021) Progress and Perspective of Metal- and Covalent-Organic Frameworks and their Derivatives for Lithium-Ion Batteries. Batteries & Supercaps, 4, 72-97. [Google Scholar] [CrossRef]
|
|
[47]
|
Wang, S., Guo, Y., Wang, F., et al. (2022) Research Progress on Metal and Covalent Organic Framework-Based Materials for High-Performance Supercapacitors. New Carbon Mate-rials, 37, 109-132. [Google Scholar] [CrossRef]
|
|
[48]
|
Cui, B. and Fu, G. (2022) Process of Metal-Organic Framework (MOF)/Covalent-Organic Framework (COF) Hybrids- Based Derivatives and Their Applications on Energy Transfer and Storage. Nanoscale, 14, 1679-1699. [Google Scholar] [CrossRef]
|
|
[49]
|
Peng, H., Raya, J., Richard, F., et al. (2020) Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Aza- Diels-Alder Reaction: Towards High-Performance Supercapacitor Materials. Angewandte Chemie-International Edition, 59, 19602-19609. [Google Scholar] [CrossRef] [PubMed]
|