|
[1]
|
Adams, J.M. and Cory, S. (2018) The BCL-2 Arbiters of Apoptosis and Their Growing Role as Cancer Targets. Cell Death & Differentiation, 25, 27-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kirkin, V., Joos, S. and Zornig, M. (2004) The Role of Bcl-2 Family Members in Tumorigenesis. Biochimica et Biophysica Acta, 1644, 229-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
D’arcy, M.S. (2019) Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy. Cell Biology International, 43, 582-592. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Tsujimoto, Y., Cossman, J., Jaffe, E., et al. (1985) Involvement of the bcl-2 Gene in Human Follicular Lymphoma. Science, 228, 1440-1443. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Tsujimoto, Y., Yunis, J., Onorato-Showe, L., et al. (1984) Molecular Cloning of the Chromosomal Breakpoint of B-Cell Lymphomas and Leukemias with the t(11;14) Chromosome Translo-cation. Science, 224, 1403-1406. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Strasser, A., Cory, S. and Adams, J.M. (2011) Deciphering the Rules of Programmed Cell Death to Improve Therapy of Cancer and Other Diseases. EMBO Journal, 30, 3667-3683. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Luo, X., O’neill, K.L. and Huang, K. (2020) The Third Model of Bax/Bak Activation: A Bcl-2 Family Feud Finally Resolved? F1000Research, 9, 935. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bhola, P.D. and Letai, A. (2016) Mitochondria-Judges and Executioners of Cell Death Sentences. Molecular Cell, 61, 695-704. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Luna-Vargas, M.P. and Chipuk, J.E. (2016) The Deadly Land-scape of Pro-Apoptotic BCL-2 Proteins in the Outer Mitochondrial Membrane. FEBS Journal, 283, 2676-2689. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Abate, M., Festa, A., Falco, M., et al. (2020) Mitochondria as Playmakers of Apoptosis, Autophagy and Senescence. Seminars in Cell & Developmental Biology, 98, 139-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dorstyn, L., Akey, C.W. and Kumar, S. (2018) New Insights into Apoptosome Structure and Function. Cell Death & Differentiation, 25, 1194-1208. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Malet, G., Martin, A.G., Orzaez, M., et al. (2006) Small Molecule Inhibitors of Apaf-1-Related Caspase-3/-9 Activation That Control Mitochondrial-Dependent Apoptosis. Cell Death & Differentiation, 13, 1523-1532. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Roberts, A.W., Wei, A.H. and Huang, D.C.S. (2021) BCL2 and MCL1 Inhibitors for Hematologic Malignancies. Blood, 138, 1120-1136. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, Z., Sun, C., Olejniczak, E.T., et al. (2000) Structural Basis for bindIng of Smac/DIABLO to the XIAP BIR3 Domain. Nature, 408, 1004-1008. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Huang, K., O’neill, K.L., Li, J., et al. (2019) BH3-Only Proteins Target BCL-xL/MCL-1, Not BAX/BAK, to Initiate Apoptosis. Cell Research, 29, 942-952. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Peperzak, V., Vikstrom, I., Walker, J., et al. (2013) Mcl-1 Is Es-sential for the Survival of Plasma Cells. Nature Immunology, 14, 290-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Veis, D.J., Sorenson, C.M., Shutter, J.R., et al. (1993) Bcl-2-Deficient Mice Demonstrate Fulminant Lymphoid Apoptosis, Polycystic Kidneys, and Hypopigmented Hair. Cell, 75, 229-240. [Google Scholar] [CrossRef]
|
|
[18]
|
Motoyama, N., Wang, F., Roth, K.A., et al. (1995) Massive Cell Death of Immature Hematopoietic Cells and Neurons in Bcl-x-Deficient Mice. Science, 267, 1506-1510. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Shahar, N. and Larisch, S. (2020) Inhibiting the Inhibitors: Targeting Anti-Apoptotic Proteins in Cancer and Therapy Resistance. Drug Resistance Updates, 52, Article ID: 100712. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Campbell, K.J. and Tait, S.W.G. (2018) Targeting BCL-2 Regu-lated Apoptosis in Cancer. Open Biology, 8, Article ID: 180002. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Villunger, A., Michalak, E.M., Coultas, L., et al. (2003) p53- and Drug-Induced Apoptotic Responses Mediated by BH3-Only Proteins Puma and Noxa. Science, 302, 1036-1038. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Quagliano, A., Gopalakrishnapillai, A. and Barwe, S.P. (2020) Un-derstanding the Mechanisms by Which Epigenetic Modifiers Avert Therapy Resistance in Cancer. Frontiers in Oncology, 10, 992. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bozkurt, S., Özkan, T., Özmen, F., et al. (2013) The Roles of Epige-netic Modifications of Proapoptotic BID and BIM Genes in Imatinib-Resistant Chronic Myeloid Leukemia Cells. Hema-tology, 18, 217-223. [Google Scholar] [CrossRef]
|
|
[24]
|
Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., et al. (2005) An Inhibitor of Bcl-2 Family Proteins Induces Regression of Solid Tumours. Nature, 435, 677-681. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kipps, T.J., Eradat, H., Grosicki, S., et al. (2015) A Phase 2 Study of the BH3 Mimetic BCL2 Inhibitor Navitoclax (ABT-263) with or without Rituximab, in Previously Untreated B-Cell Chronic Lymphocytic Leukemia. Leukemia & Lymphoma, 56, 2826-2833. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wilson, W.H., O’connor, O.A., Czuczman, M.S., et al. (2010) Navitoclax, a Targeted High-Affinity Inhibitor of BCL-2, in Lymphoid Malignancies: A Phase 1 Dose-Escalation Study of Safety, Pharmacokinetics, Pharmacodynamics, and Antitumour Activity. The Lancet Oncology, 11, 1149-1159. [Google Scholar] [CrossRef]
|
|
[27]
|
Roberts, A.W., Seymour, J.F., Brown, J.R., et al. (2012) Substantial Susceptibility of Chronic Lymphocytic Leukemia to BCL2 Inhibition: Results of a Phase I Study of Navito-clax in Patients with Relapsed or Refractory Disease. Journal of Clinical Oncology, 30, 488-496. [Google Scholar] [CrossRef]
|
|
[28]
|
Roberts, A.W., Advani, R.H., Kahl, B.S., et al. (2015) Phase 1 Study of the Safety, Pharmacokinetics, and Antitumour Activity of the BCL2 Inhibitor Navitoclax in Combination with Rituximab in Patients with Relapsed or Refractory CD20+ Lymphoid Malignancies. British Journal of Haematology, 170, 669-678. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mason, K.D., Carpinelli, M.R., Fletcher, J.I., et al. (2007) Pro-grammed a Nuclear Cell Death Delimits Platelet Life Span. Cell, 128, 1173-1186. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Josefsson, E.C., Vainchenker, W. and James, C. (2020) Regulation of Platelet Production and Life Span: Role of Bcl-xL and Potential Implications for Human Platelet Diseases. Internation-al Journal of Molecular Sciences, 21, 7591. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Souers, A.J., Leverson, J.D., Boghaert, E.R., et al. (2013) ABT-199, a Potent and Selective BCL-2 Inhibitor, Achieves Antitumor Activity While Sparing Platelets. Nature Medicine, 19, 202-208. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Roberts, A.W., Davids, M.S., Pagel, J.M., et al. (2016) Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. The New England Journal of Medicine, 374, 311-322. [Google Scholar] [CrossRef]
|
|
[33]
|
Fletcher, L., Nabrinsky, E., Liu, T., et al. (2020) Cell Death Pathways in Lymphoid Malignancies. Current Oncology Reports, 22, 10. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Jullien, M., Gomez-Bougie, P., Chiron, D., et al. (2020) Restoring Apoptosis with BH3 Mimetics in Mature B-Cell Malignancies. Cells, 9, 717. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yogarajah, M. and Stone, R.M. (2018) A Concise Review of BCL-2 In-hibition in Acute Myeloid Leukemia. Expert Review of Hematology, 11, 145-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lachowiez, C., Dinardo, C.D. and Konopleva, M. (2020) Venetoclax in Acute Myeloid Leukemia—Current and Future Directions. Leukemia & Lymphoma, 61, 1313-1322. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wei, A.H., Strickland, S.A., Hou, J.Z., et al. (2019) Veneto-clax Combined with Low-Dose Cytarabine for Previously Untreated Patients with Acute Myeloid Leukemia: Results from a Phase Ib/II Study. Journal of Clinical Oncology, 37, 1277-1284. [Google Scholar] [CrossRef]
|
|
[38]
|
Pollyea, D.A., Pratz, K., Letai, A., et al. (2021) Venetoclax with Aza-citidine or Decitabine in Patients with Newly Diagnosed Acute Myeloid Leukemia: Long-Term Follow-Up from a Phase 1b Study. American Journal of Hematology, 96, 208-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Dinardo, C.D., Lachowiez, C.A., Takahashi, K., et al. (2021) Venetoclax Combined with FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. Journal of Clinical Oncology, 39, 2768-2778. [Google Scholar] [CrossRef]
|
|
[40]
|
Seymour, J.F., Kipps, T.J., Eichhorst, B., et al. (2018) Veneto-clax-Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. The New England Journal of Medicine, 378, 1107-1120. [Google Scholar] [CrossRef]
|
|
[41]
|
Flinn, I.W., Gribben, J.G., Dyer, M.J.S., et al. (2019) Phase 1b Study of Venetoclax-Obinutuzumab in Previously Untreated and Relapsed/Refractory Chronic Lymphocytic Leukemia. Blood, 133, 2765-2775. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Jain, N., Keating, M., Thompson, P., et al. (2021) Ibrutinib plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: A Nonrandomized Phase 2 Trial. JAMA Oncology, 7, 1213-1219. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kaufman, J.L., Gasparetto, C., Schjesvold, F.H., et al. (2021) Targeting BCL-2 with Venetoclax and Dexamethasone in Patients with Relapsed/Refractory t(11;14) Multiple Myeloma. American Journal of Hematology, 96, 418-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kumar, S., Kaufman, J.L., Gasparetto, C., et al. (2017) Efficacy of Veneto-clax as Targeted Therapy for Relapsed/Refractory t(11;14) Multiple Myeloma. Blood, 130, 2401-2409. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Birkinshaw, R.W., Gong, J.N., Luo, C.S., et al. (2019) Struc-tures of BCL-2 in Complex with Venetoclax Reveal the Molecular Basis of Resistance Mutations. Nature Communica-tions, 10, 2385. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Satta, T. and Grant, S. (2020) Enhancing Venetoclax Activity in Hematological Malignancies. Expert Opinion on Investigational Drugs, 29, 697-708. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Bose, P., Gandhi, V. and Konopleva, M. (2017) Pathways and Mechanisms of Venetoclax Resistance. Leukemia & Lymphoma, 58, 1-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Yi, X., Sarkar, A., Kismali, G., et al. (2020) AMG-176, an Mcl-1 Antagonist, Shows Preclinical Efficacy in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 26, 3856-3867. [Google Scholar] [CrossRef]
|
|
[49]
|
Thus, Y.J., Eldering, E., Kater, A.P., et al. (2022) Tipping the Balance: Toward Rational Combination Therapies to Overcome Venetoclax Resistance in Mantle Cell Lymphoma. Leukemia, 36, 2165-2176. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhao, J., Niu, X., Li, X., et al. (2016) Inhibition of CHK1 En-hances Cell Death Induced by the Bcl-2-Selective Inhibitor ABT-199 in Acute Myeloid Leukemia Cells. Oncotarget, 7, 34785-34799. [Google Scholar] [CrossRef] [PubMed]
|