|
[1]
|
Wang, L., Ze, F., Li, J., et al. (2021) Trends of Global Burden of Atrial Fibrillation/Flutter from Global Burden of Dis-ease Study 2017. Heart, 107, 881-887. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Iwasaki, Y., Nishida, K., Kato, T., et al. (2011) Atrial Fibrillation Pathophysiology. Circulation, 124, 2264-2274. [Google Scholar] [CrossRef]
|
|
[3]
|
Schotten, U., Greiser, M., Benke, D., et al. (2002) Atrial Fibrillation-Induced Atrial Contractile Dysfunction: A Tachycardiomyopathy of a Different Sort. Cardiovascular Research, 53, 192-201. [Google Scholar] [CrossRef]
|
|
[4]
|
Hindricks, G., Potpara, T., Dagres, N., et al. (2021) 2020 ESC Guidelines for the Diagnosis and Management of Atrial fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). European Heart Journal, 42, 373-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Calkins, H., Hindricks, G., Cappato, R., et al. (2017) 2017 HRS/EHRA/ECAS/APHRS/SOLAECE Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibril-lation. Heart Rhythm, 14, e275-e444. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hartono, B., Lo, L., Cheng, C., et al. (2012) A Novel Finding of the Atrial Substrate Properties and Long-Term Results of Catheter Ablation in Chronic Atrial Fibrillation Patients with Left Atrial Spontaneous Echo Contrast. Journal of Cardiovascular Electrophysiology, 23, 239-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Sohns, C. and Marrouche, N.F. (2020) Atrial Fibrillation and Cardiac Fibrosis. European Heart Journal, 41, 1123-1131. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ravassa, S., Ballesteros, G. and Díez, J. (2019) Aging and Atrial Fi-brillation: A Matter of Fibrosis. Aging (Albany NY), 11, 9965-9966. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Dzeshka, M.S., Lip, G.Y., Snezhitskiy, V., et al. (2015) Cardiac Fi-brosis in Patients with Atrial Fibrillation: Mechanisms and Clinical Implications. Journal of the American College of Cardiology, 66, 943-959. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Marrouche, N.F., Wilber, D., Hindricks, G., et al. (2014) Associa-tion of Atrial Tissue Fibrosis Identified by Delayed Enhancement MRI and Atrial Fibrillation Catheter Ablation. JAMA, 311, 498. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ma, J., Chen, Q. and Ma, S. (2021) Left Atrial Fibrosis in Atri-al Fibrillation: Mechanisms, Clinical Evaluation and Management. Journal of Cellular and Molecular Medicine, 25, 2764-2775. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Velagapudi, P., Turagam, M.K., Leal, M.A., et al. (2013) Atrial Fibrosis: A Risk Stratifier for Atrial Fibrillation. Expert Review of Cardiovascular Therapy, 11, 155-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kowalewski, C. (2021) Mapping Atrial Fibrillation. Herz, 46, 305-311. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kong, P., Christia, P. and Frangogiannis, N.G. (2014) The Pathogenesis of Cardiac Fibrosis. Cellular and Molecular Life Sciences, 71, 549-574. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chen, Y.J., Chen, S.A., Chen, Y.C., et al. (2001) Effects of Rapid Atrial Pacing on the Arrhythmogenic Activity of Single Cardiomyocytes from Pulmonary Veins: Implication in Initiation of Atrial Fibrillation. Circulation, 104, 2849-2854. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pauklin, P., Zilmer, M., Eha, J., et al. (2022) Markers of Inflammation, Oxidative Stress, and Fibrosis in Patients with Atrial Fibrillation. Oxidative Medicine and Cellular Longevity, 2022, Arti-cle ID: 4556671. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Schirone, L., Forte, M., Palmerio, S., et al. (2017) A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 3920195. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Swartz, M.F., Fink, G.W., Sarwar, M.F., et al. (2012) Elevated Pre-Operative Serum Peptides for Collagen I and III Synthesis Result in Post-Surgical Atrial Fibrillation. Journal of the American College of Cardiology, 60, 1799-1806. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Goktekin, O. (2014) Novel Fibro-Inflammation Markers in As-sessing Left Atrial Remodeling in Non-Valvular Atrial Fibrillation. Medical Science Monitor, 20, 463-470. [Google Scholar] [CrossRef]
|
|
[20]
|
Begg, G.A., Karim, R., Oesterlein, T., et al. (2017) Intra-Cardiac and Peripheral Levels of Biochemical Markers of Fibrosis in Patients Undergoing Catheter Ablation for Atrial Fibrillation. EP Europace, 19, 1944-1950. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Begg, G.A., Karim, R., Oesterlein, T., et al. (2018) Left Atrial Volt-age, Circulating Biomarkers of Fibrosis, and Atrial Fibrillation Ablation. A Prospective Cohort Study. PLOS ONE, 13, e189936. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Duprez, D.A., Heckbert, S.R., Alonso, A., et al. (2018) Colla-gen Biomarkers and Incidence of New Onset of Atrial Fibrillation in Subjects with No Overt Cardiovascular Disease at Baseline. Circulation: Arrhythmia and Electrophysiology, 11, e006557. [Google Scholar] [CrossRef]
|
|
[23]
|
Ionin, V.A., Baranova, E.I., Zaslavskaya, E.L., et al. (2020) Ga-lectin-3, N-Terminal Propeptides of Type I and III Procollagen in Patients with Atrial Fibrillation and Metabolic Syn-drome. International Journal of Molecular Sciences, 21, 5689. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ravassa, S., Ballesteros, G., Lopez, B., et al. (2019) Combination of Circulating Type I Collagen-Related Biomarkers Is Associat-ed with Atrial Fibrillation. Journal of the American College of Cardiology, 73, 1398-1410. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bi, X., Yang, C., Song, Y., et al. (2021) Matrix Metalloproteinases Increase Because of Hypoperfusion in Obstructive Hypertrophic Cardiomyopathy. The Annals of Thoracic Surgery, 111, 915-922. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Su, F., Zhang, W., Chen, Y., et al. (2014) Significance of Hypoxia-Inducible Factor-1α Expression with Atrial Fibrosis in Rats Induced with Isoproterenol. Experimental and Therapeutic Medicine, 8, 1677-1682. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Xiao, H., Lei, H., Qin, S., et al. (2010) TGF-β1 Expression and Atrial Myocardium Fibrosis Increase in Atrial Fibrillation Secondary to Rheumatic Heart Disease. Clinical Cardiology, 33, 149-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tian, Y., Wang, Y., Chen, W., et al. (2017) Role of serum TGF-β1 Level in Atrial Fibrosis and Outcome after Catheter Ablation for Paroxysmal Atrial Fibrillation. Medicine, 96, e9210. [Google Scholar] [CrossRef]
|
|
[29]
|
Ho, J.E., Yin, X., Levy, D., et al. (2014) Galectin 3 and In-cident Atrial Fibrillation in the Community. American Heart Journal, 167, 729-734. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gong, M., Cheung, A., Wang, Q.S., et al. (2020) Galectin-3 and Risk of Atrial Fibrillation: A Systematic Review and Meta-Analysis. Journal of Clinical Laboratory Analysis, 34, e23104. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Dong, Q., Li, S., Wang, W., et al. (2019) FGF23 Regulates Atrial Fibrosis in Atrial Fibrillation by Mediating the STAT3 and SMAD3 Pathways. Journal of Cellular Physiology, 234, 19502-19510. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Mizia-Stec, K., Wieczorek, J., Polak, M., et al. (2018) Lower Soluble Klotho and Higher Fibroblast Growth Factor 23 Serum Levels Are Associated with Episodes of Atrial Fibrilla-tion. Cytokine, 111, 106-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chen, C., Ponnusamy, M., Liu, C., et al. (2017) MicroRNA as a Therapeutic Target in Cardiac Remodeling. BioMed Research International, 2017, Article ID: 1278436. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Nattel, S. and Harada, M. (2014) Atrial Remodeling and Atrial Fibrilla-tion: Recent Advances and Translational Perspectives. Journal of the American College of Cardiology, 63, 2335-2345. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Da Silva, A.M.G., de Araújo, J.N.G., de Oliveira, K.M., et al. (2018) Circulating miRNAs in Acute New-Onset Atrial Fibrillation and Their Target mRNA Network. Journal of Car-diovascular Electrophysiology, 29, 1159-1166. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lu, Y., Zhang, Y., Wang, N., et al. (2010) MicroRNA-328 Contributes to Adverse Electrical Remodeling in Atrial Fibrillation. Circulation, 122, 2378-2387. [Google Scholar] [CrossRef]
|
|
[37]
|
Rizvi, F., Mirza, M., Olet, S., et al. (2020) Non-invasive Biomarker-Based Risk Stratification for Development of New Onset Atrial Fibrillation after Coronary Artery Bypass Surgery. International Journal of Cardiology, 307, 55-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Qiao, G., Xia, D., Cheng, Z., et al. (2017) miR132 in Atrial Fi-brillation Directly Targets Connective Tissue Growth Factor. Molecular Medicine Reports, 16, 4143-4150. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chung, M.K., Martin, D.O., Sprecher, D., et al. (2001) C-Reactive Protein Elevation in Patients with Atrial Arrhythmias: Inflammatory Mechanisms and Persistence of Atrial Fibrillation. Circulation, 104, 2886-2891. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Aviles, R.J., Martin, D.O. and Apperson-Hansen, C. (2004) Inflam-mation as a Risk Factor for Atrial Fibrillation. ACC Current Journal Review, 13, 64. [Google Scholar] [CrossRef]
|
|
[41]
|
Marott, S.C.W., Nordestgaard, B.G., Zacho, J., et al. (2010) Does Elevated C-Reactive Protein Increase Atrial Fibrillation Risk? Journal of the American College of Cardiology, 56, 789-795. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Pellegrino, P.L., Brunetti, N., De Gennaro, L., et al. (2013) Inflammatory Activation in an Unselected Population of Subjects with Atrial Fibrillation: Links with Structural Heart Disease, Atrial Remodeling and Recent Onset. Internal and Emergency Medicine, 8, 123-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Marcus, G.M., Smith, L.M., Ordovas, K., et al. (2010) Intracardi-ac and Extracardiac Markers of Inflammation during Atrial Fibrillation. Heart Rhythm, 7, 149-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kimura, T., Takatsuki, S., Inagawa, K., et al. (2014) Serum In-flammation Markers Predicting Successful Initial Catheter Ablation for Atrial Fibrillation. Heart, Lung and Circulation, 23, 636-643. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Carballo, D., Noble, S., Carballo, S., et al. (2018) Bi-omarkers and Arrhythmia Recurrence Following Radiofrequency Ablation of Atrial Fibrillation. Journal of International Medical Research, 46, 5183-5194. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ren, M., Li, X., Hao, L., et al. (2015) Role of Tumor Necrosis Factor Alpha in the Pathogenesis of Atrial Fibrillation: A Novel Potential Therapeutic Target? Annals of Medicine, 47, 316-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Abe, I., Teshima, Y., Kondo, H., et al. (2018) Association of Fibrotic Remodeling and Cytokines/Chemokines Content in Epicardial Adipose Tissue with Atrial Myocardial Fibrosis in Patients with Atrial Fibrillation. Heart Rhythm, 15, 1717-1727. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhou, P., Waresi, M., Zhao, Y., et al. (2020) Increased Serum Interleukin-6 Level as a Predictive Biomarker for Atrial Fibrillation: A Systematic Review and Meta-Analysis. Revista Portuguesa de Cardiologia (English Edition), 39, 723-728. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Hak, A., Myśliwska, J., Wickiewicz, J., et al. (2009) Interleukin-2 as a Predictor of Early Postoperative Atrial Fibrillation after Cardiopulmonary Bypass Graft (CABG). Journal of Inter-feron & Cytokine Research, 29, 327-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Marcus, G.M., Whooley, M.A., Glidden, D.V., et al. (2008) Inter-leukin-6 and Atrial Fibrillation in Patients with Coronary Artery Disease: Data from the Heart and Soul Study. American Heart Journal, 155, 303-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Kaireviciute, D., Blann, A.D., Balakrishnan, B., et al. (2010) Char-acterisation and Validity of Inflammatory Biomarkers in the Prediction of Post-Operative Atrial Fibrillation in Coronary Artery Disease Patients. Thrombosis and Haemostasis, 104, 122-127. [Google Scholar] [CrossRef]
|
|
[52]
|
Liuba, I., Ahlmroth, H., Jonasson, L., et al. (2008) Source of Inflam-matory Markers in Patients with Atrial Fibrillation. Europace, 10, 848-853. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
De Gennaro, L., Brunetti, N.D., Montrone, D., et al. (2012) Inflam-matory Activation and Carbohydrate Antigen-125 Levels in Subjects with Atrial Fibrillation. European Journal of Clini-cal Investigation, 42, 371-375. [Google Scholar] [CrossRef] [PubMed]
|