|
[1]
|
Newell, L. and Cook, R. (2021) Advances in Acute Myeloid Leukemia. BMJ (Clinical Research ed), 375, 2026. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kirtonia, A., Pandya, G., Sethi, G., et al. (2020) A Comprehensive Review of Genetic Alterations and Molecular Targeted Therapies for the Implementation of Personalized Medicine in Acute Myeloid Leukemia. Journal of Molecular Medicine (Berlin, Germany), 98, 1069-1091. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Lancet, J., Uy, G., Newell, L., et al. (2021) CPX-351 versus 7+3 Cytarabine and Daunorubicin Chemotherapy in Older Adults with Newly Diagnosed High-Risk or Secondary Acute Myeloid Leukaemia: 5-Year Results of a Randomised, Open-Label, Multicentre, Phase 3 Trial. The Lancet Haematology, 8, e481-e491. [Google Scholar] [CrossRef]
|
|
[4]
|
Swaminathan, M. and Wang, E. (2020) Novel Therapies for AML: A Round-Up for Clinicians. Expert Review of Clinical Pharmacology, 13, 1389-1400. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lancet, J., Uy, G., Cortes, J., et al. (2018) CPX-351 (Cytarabine and Daunorubicin) Liposome for Injection versus Conventional Cytarabine plus Daunorubicin in Older Patients with Newly Diagnosed Secondary Acute Myeloid Leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 36, 2684-2692. [Google Scholar] [CrossRef]
|
|
[6]
|
Roboz, G., Montesinos, P., Selleslag, D., et al. (2016) Design of the Randomized, Phase III, QUAZAR AML Maintenance Trial of CC-486 (Oral Azacitidine) Maintenance Therapy in Acute Myeloid Leukemia. Future Oncology (London, England), 12, 293-302. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
De Lima, M., Roboz, G., Platzbecker, U., et al. (2021) AML and the Art of Remission Maintenance. Blood Reviews, 49, Article ID: 100829. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Leopold, L. and Willemze, R. (2002) The Treatment of Acute Myeloid Leukemia in First Relapse: A Comprehensive Review of the Literature. Leukemia & Lymphoma, 43, 1715-1727. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wei, A., Döhner, H., Pocock, C., et al. (2020) Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. The New England Journal of Medicine, 383, 2526-2537. [Google Scholar] [CrossRef]
|
|
[10]
|
Gottardi, M., Simonetti, G., Sperotto, A., et al. (2021) Therapeutic Targeting of Acute Myeloid Leukemia by Gemtuzumab Ozogamicin. Cancers, 13, 4566. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kantarjian, H., Kadia, T., Dinardo, C., et al. (2021) Acute Myeloid Leukemia: Current Progress and Future Directions. Blood Cancer Journal, 11, 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Short, N., Kantarjian, H., Ravandi, F., et al. (2019) Emerging Treatment Paradigms with FLT3 Inhibitors in Acute Myeloid Leukemia. Therapeutic Advances in Hematology, 10, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yazdandoust, E., Sadeghian, M., Shams, S., et al. (2022) FLT3-ITD Evaluation of Mutations and Gene Expression in AML Patients. Iranian Journal of Pathology, 17, 419-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Padmakumar, D., Chandraprabha, V., Gopinath, P., et al. (2021) A Concise Review on the Molecular Genetics of Acute Myeloid Leukemia. Leukemia Research, 111, Article ID: 106727. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tecik, M. and Adan, A. (2022) Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches. OncoTargets and Therapy, 15, 1449-1478. [Google Scholar] [CrossRef]
|
|
[16]
|
Nuhoğlu Kantarci, E. and Eşkazan, A. (2022) Gilteritinib in the Management of Acute Myeloid Leukemia: Current Evidence and Future Directions. Leukemia Research, 114, Article ID: 106808. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Stanchina, M., Soong, D., et al. (2020) Advances in Acute Myeloid Leukemia: Recently Approved Therapies and Drugs in Development. Cancers, 12, 3225. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kantarjian, H., Short, N., Dinardo, C., et al. (2021) Harnessing the Benefits of Available Targeted Therapies in Acute Myeloid Leukaemia. The Lancet Haematology, 8, e922-e933. [Google Scholar] [CrossRef]
|
|
[19]
|
Short, N., Konopleva, M., Kadia, T., et al. (2020) Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discovery, 10, 506-525. [Google Scholar] [CrossRef]
|
|
[20]
|
Kucukyurt, S. and Eskazan, A. (2019) New Drugs Approved for Acute Myeloid Leukaemia in 2018. British Journal of Clinical Pharmacology, 85, 2689-2693. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bohl, S., Bullinger, L. and Rücker, F. (2019) New Targeted Agents in Acute Myeloid Leukemia: New Hope on the Rise. International Journal of Molecular Sciences, 20, 1983. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Amaya, M. and Pollyea, D. (2018) Targeting the IDH2 Pathway in Acute Myeloid Leukemia. Clinical Cancer Research: An Official Journal of the American Association for Cancer Re-search, 24, 4931-4936. [Google Scholar] [CrossRef]
|
|
[23]
|
Tian, W., Zhang, W., Wang, Y., et al. (2022) Recent Ad-vances of IDH1 Mutant Inhibitor in Cancer Therapy. Frontiers in Pharmacology, 13, Article ID: 982424. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liu, X. and Gong, Y. (2019) Isocitrate Dehydrogenase Inhibitors in Acute Myeloid Leukemia. Biomarker Research, 7, Article No. 22. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Stemer, G., Rowe, J. and Ofran, Y. (2021) Efficacy and Safety Profile of Ivosidenib in the Management of Patients with Acute Myeloid Leukemia (AML): An Update on the Emerging Evidence. Blood and Lymphatic Cancer: Targets and Therapy, 11, 41-54. [Google Scholar] [CrossRef]
|
|
[26]
|
Abou Dalle, I. and Dinardo, C. (2018) The Role of Enasidenib in the Treatment of Mutant IDH2 Acute Myeloid Leukemia. Therapeutic Advances in Hematology, 9, 163-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kayser, S. and Levis, M. (2023) The Clinical Impact of the Mo-lecular Landscape of Acute Myeloid Leukemia. Haematologica, 108, 308-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Liu, H. (2021) Emerging Agents and Regimens for AML. Journal of Hematology & Oncology, 14, 49. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Michelozzi, I., Kirtsios, E. and Giustacchini, A. (2021) Driving CAR T Stem Cell Targeting in Acute Myeloid Leukemia: The Roads to Success. Cancers, 13, 2816. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lainez-González, D., Serrano-López, J. and Alonso-Domínguez, J. (2021) Understanding the Hedgehog Signaling Pathway in Acute Myeloid Leukemia Stem Cells: A Necessary Step toward a Cure. Biology, 10, 255. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Terao, T. and Minami, Y. (2019) Targeting Hedgehog (Hh) Pathway for the Acute Myeloid Leukemia Treatment. Cells, 8, 312. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Iyer, S., Stanchina, M., Bradley, T., et al. (2022) Profile of Glasdegib for the Treatment of Newly Diagnosed Acute Myeloid Leukemia (AML): Evidence to Date. Cancer Management and Research, 14, 2267-2272. [Google Scholar] [CrossRef]
|
|
[33]
|
Halik, A., Arends, C., Bullinger, L., et al. (2022) Refining AML Treatment: The Role of Genetics in Response and Resistance Evaluation to New Agents. Cancers, 14, 1689. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kayser, S. and Levis, M. (2022) Updates on Targeted Therapies for Acute Myeloid Leukaemia. British Journal of Haematology, 196, 316-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ishii, H. and Yano, S. (2022) New Therapeutic Strategies for Adult Acute Myeloid Leukemia. Cancers, 14, 2806. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Al-Haideri, M., Tondok, S., Safa, S., et al. (2022) CAR-T Cell Combination Therapy: The Next Revolution in Cancer Treatment. Cancer Cell International, 22, 365. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Schorr, C. and Perna, F. (2022) Targets for Chimeric Antigen Receptor T-Cell Therapy of Acute Myeloid Leukemia. Frontiers in Immunology, 13, Article ID: 1085978. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhang, X., Zhu, L., Zhang, H., et al. (2022) CAR-T Cell Therapy in Hematological Malignancies: Current Opportunities and Challenges. Frontiers in Immunology, 13, Article ID: 927153. [Google Scholar] [CrossRef] [PubMed]
|