|
[1]
|
Zhang, Y., Chu, K., He, S., et al. (2020) Fabrication of High Strength, Antibacterial and Biocompatible Ti-5Mo-5Ag Al-loy for Medical and Surgical Implant Applications. Materials Science and Engineering: C, 106, Article ID: 110165. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Perren, S.M., Regazzoni, P. and Fernandez, A.A. (2017) How to Choose between the Implant Materials Steel and Titanium in Orthopedic Trauma Surgery: Part 2-Biological Aspects. Acta Chirurgiae Orthopaedicae et Traumatologiae Cechoslovaca, 84, 85-90.
|
|
[3]
|
Kaur, M. and Singh, K. (2019) Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications. Materials Science and Engineering: C, 102, 844-862. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhang, Y., Wang, J., Wang, P., et al. (2013) Low Elastic Modulus Contributes to the Osteointegration of Titanium Alloy Plug. Journal of Biomedical Materials Re-search Part B: Applied Biomaterials, 101, 584-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, L., Zhou, W., Yu, Z., et al. (2021) An in Vitro Evaluation of the Hierarchical Micro/Nanoporous Structure of a Ti3Zr2Sn3Mo25Nb Alloy after Surface Dealloying. ACS Applied Materi-als & Interfaces, 13, 15017-15030. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sahal, G., Nasseri, B., Bilkay, I.S. and Piskin, E. (2015) Anti-Biofilm Effect of Nanometer Scale Silver (NmSAg) Coatings on Glass and Polystyrene Surfaces against P. Mirabilis, C. Glabrata and C. Tropicalis Strains. Journal of Applied Biomaterials & Functional Materials, 13, 351-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Jiang, N., Wang, B.-W., Chai, Y.-M., et al. (2019) Chinese Expert Consensus on Diagnosis and Treatment of Infection after Fracture Fixation. Injury, 50, 1952-1958. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhu, C., He, N., Cheng, T., et al. (2013) Ultrasound-Targeted Microbubble Destruction Enhances Human β-Defensin 3 Activity against Antibiotic-Resistant Staphylococcus Biofilms. Inflammation, 36, 983-996. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, R., Shi, M., Xu, F., et al. (2020) Graphdiyne-Modified TiO2 Nanofibers With Osteoinductive and Enhanced Photocatalytic Antibacterial Activities to Prevent Implant Infection. Nature Communications, 11, Article No. 4465. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Flemming, H.-C., Wingender, J., Szewzyk, U., et al. Biofilms: An Emergent Form of Bacterial Life. Nature Reviews Microbiology, 14, 563-575.[CrossRef] [PubMed]
|
|
[11]
|
Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S. and Ciofu, O. (2010) Antibiotic Resistance of Bacterial Biofilms. International Journal of Antimicrobial Agents, 35, 322-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Koo, H., Allan, R.N., Howlin, R.P., Stoodley, P. and Hall-Stoodley, L. (2017) Targeting Microbial Biofilms: Current and Prospective Therapeutic Strategies. Nature Reviews Microbiology, 15, 740-755. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chopra, D., Gulati, K. and Ivanovski, S. (2021) Understanding and Optimizing the Antibacterial Functions of Anodized Nano-Engineered Titanium Implants. Acta Biomaterialia, 127, 80-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, D., Liu, Y., Liu, Z. and Wang, Q. (2020) Advances in Antibacterial Functionalized Coatings on Mg and Its Alloys for Medical Use—A Review. Coatings, 10, Article No. 828. [Google Scholar] [CrossRef]
|
|
[15]
|
Shi, A., Zhu, C., Fu, S., et al. (2020) What Controls the Antibacte-rial Activity of Ti-Ag Alloy, Ag Ion or Ti2Ag Particles? Materials Science and Engineering: C, 109, Article ID: 110548. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lei, Z., Zhang, H., Zhang, E., et al. (2018) Antibacterial Activities and Biocompatibilities of Ti-Ag Alloys Prepared by Spark Plasma Sintering and Acid Etching. Materials Science and Engineering: C, 92, 121-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lee, J.H., Kwon, J.S., Moon, S.K., et al. (2016) Titanium-Silver Alloy Miniplates for Mandibular Fixation: In Vitro and In Vivo Study. Journal of Oral and Maxillofacial Surgery, 74, 1622.e1-1622.e12. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Nakajo, K., Takahashi, M., Kikuchi, M., et al. (2014) Inhibitory Effect of Ti-Ag Alloy on Artificial Biofilm Formation. Dental Materials Journal, 33, 389-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Maharubin, S., Hu, Y., Sooriyaarachchi, D., Cong, W. and Tan, G.Z. (2019) Laser Engineered Net Shaping of Antimicrobial and Biocompatible Titanium-Silver Alloys. Materials Science and Engineering: C, 105, Article ID: 110059. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Diez-Escudero, A., Carlsson, E., Andersson, B., Järhult, J.D. and Hailer, N.P. (2022) Trabecular Titanium for Orthopedic Applications: Balancing Antimicrobial with Osteoconductive Properties by Varying Silver Contents. ACS Applied Materials & Interfaces, 14, 41751-41763. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Togawa, G., Takahashi, M., Tada, H. and Takada, Y. (2022) Devel-opment of Ternary Ti-Ag-Cu Alloys with Excellent Mechanical Properties and Antibiofilm Activity. Materials, 15, Arti-cle No. 9011. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Rashid, S., Sebastiani, M., Mughal, M.Z., et al. (2021) In-fluence of the Silver Content on Mechanical Properties of Ti-Cu-Ag Thin Films. Nanomaterials, 11, Article No. 435. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kikuchi, M., Takahashi, M. and Okuno, O. (2006) Elastic Moduli of Cast Ti-Au, Ti-Ag, and Ti-Cu Alloys. Dental Materials, 22, 641-646. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sobolev, A., Valkov, A., Kossenko, A., et al. (2019) Bioactive Coating on Ti Alloy with High Osseointegration and Antibacterial Ag Nanoparticles. ACS Applied Materials & Interfaces, 11, 39534-39544. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Li, B., Hao, J., Min, Y., et al. (2015) Biological Properties of Nanostructured Ti Incorporated with Ca, P and Ag by Electrochemical Method. Materials Science and Engineering: C, 51, 80-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yu, S., Guo, D., Han, J., et al. (2020) Enhancing Anti-bacterial Performance and Biocompatibility of Pure Titanium by a Two-Step Electrochemical Surface Coating. ACS Ap-plied Materials & Interfaces, 12, 44433-44446. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, Y.-Y., Zhu, Y., Lu, D.-Z., et al. (2021) Evaluation of Osteo-genic and Antibacterial Properties of Strontium/Silver-Containing Porous TiO2 Coatings Prepared by Micro-Arc Oxida-tion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109, 505-516. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
He, X., Zhang, X., Bai, L., et al. (2016) Antibacterial Ability and Osteo-genic Activity of Porous Sr/Ag-Containing TiO2 Coatings. Biomedical Materials, 11, Article ID: 045008. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Putra, N.E., Leeflang, M.A., Ducret, V., et al. (2022) Pre-venting Antibiotic-Resistant Infections: Additively Manufactured Porous Ti6Al4V Biofunctionalized with Ag and Fe Nanoparticles. International Journal of Molecular Sciences, 23, Article No. 13239. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
van Hengel, I.A.J., Tierolf, M., Valerio, V.P.M., et al. (2020) Self-Defending Additively Manufactured Bone Implants Bearing Silver and Copper Nanoparticles. Journal of Materials Chemistry B, 8, 1589-1602. [Google Scholar] [CrossRef]
|
|
[31]
|
Zhang, Y., Dong, C., Yang, S., et al. (2018) Enhanced Silver Loaded Antibacterial Titanium Implant Coating With Novel Hierarchical Effect. Journal of Biomaterials Applications, 32, 1289-1299. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, Y., Wang, F., Huang, Q., et al. (2020) Layer-by-Layer Immobilizing of Polydopamine-Assisted ε-Polylysine and Gum Arabic on Titanium: Tailoring of Antibacterial and Oste-ogenic Properties. Materials Science and Engineering: C, 110, Article ID: 110690. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Gao, C., Cheng, H., Xu, N., et al. (2019) Poly(dopamine) and Ag Nanoparticle-Loaded TiO2 Nanotubes With Optimized Antibacterial and Ros-Scavenging Bioactivities. Nanomedicine, 14, 803-818. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yuan, Z., Liu, P., Hao, Y., Ding, Y. and Cai, K. (2018) Construction of Ag-Incorporated Coating on Ti Substrates for Inhibited Bacterial Growth and Enhanced Osteoblast Response. Colloids and Surfaces B: Biointerfaces, 171, 597-605. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhong, X., Song, Y., Yang, P., et al. (2016) Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacte-rial Multilayer via Layer-by-Layer Self-Assembly. PLOS ONE, 11, e0146957. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Croes, M., Bakhshandeh, S., van Hengel, I.A.J., et al. (2018) Antibacterial and Immunogenic Behavior of Silver Coatings on Additively Manufactured Porous Titanium. Acta Bio-materialia, 81, 315-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Furko, M., Jiang, Y., Wilkins, T.A. and Balázsi, C. (2016) Elec-trochemical and Morphological Investigation of Silver and Zinc Modified Calcium Phosphate Bioceramic Coatings on Metallic Implant Materials. Materials Science and Engineering: C, 62, 249-259. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Pruchova, E., Kosova, M., Fojt, J., et al. (2019) A Two-Phase Gradual Silver Release Mechanism from a Nanostructured TiAlV Surface as a Possible Antibacterial Modification in Im-plants. Bioelectrochemistry, 127, 26-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Radtke, A., Grodzicka, M., Ehlert, M., et al. (2019) “To Be Microbiocidal and Not to Be Cytotoxic at the Same Time…”—Silver Nanoparticles and Their Main Role on the Surface of Titanium Alloy Implants. Journal of Clinical Medicine, 8, Article No. 334. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Radtke, A., Grodzicka, M., Ehlert, M., et al. (2018) Studies on Silver Ions Releasing Processes and Mechanical Properties of Surface-Modified Titanium Alloy Implants. International Journal of Molecular Sciences, 19, Article No. 3962. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Cabal, B., Cafini, F., Esteban-Tejeda, L., et al. (2012) Inhibitory Effect on in Vitro Streptococcus oralis Biofilm of a Soda-Lime Glass Containing Silver Nanoparticles Coating on Titanium Al-loy. PLOS ONE, 7, e42393. [Google Scholar] [CrossRef] [PubMed]
|