|
[1]
|
Bejarano, L., Jordāo, M.J.C. and Joyce, J.A. (2021) Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 11, 933-959. [Google Scholar] [CrossRef]
|
|
[2]
|
Herbst, R.S., Giaccone, G., de Ma-rinis, F., et al. (2020) Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. The New England Journal of Medicine, 383, 1328-1339. [Google Scholar] [CrossRef]
|
|
[3]
|
Qiu, G.Z., Jin, M.Z., Dai, J.X., et al. (2017) Reprogramming of the Tumor in the Hypoxic Niche: The Emerging Concept and Associated Therapeu-tic Strategies. Trends in Pharmacological Sciences, 38, 669-686. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Biffi, G. and Tuveson, D.A. (2021) Diversity and Biology of Can-cer-Associated Fibroblasts. Physiological Reviews, 101, 147-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Affo, S., Nair, A., Brundu, F., et al. (2021) Promotion of Chol-angiocarcinoma Growth by Diverse Cancer-Associated Fibroblast Subpopulations. Cancer Cell, 39, 883. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cadamuro, M., Nardo, G., Indraccolo, S., et al. (2013) Platelet De-rived Growth Factor-D and Rho GTPases Regulate Recruitment of Cancer-Associated Fibroblasts in Cholangiocarcino-ma. Hepatology, 58, 1042-1053. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Sahai, E., Astsaturov, I., Cukierman, E., et al. (2020) A Framework for Advancing Our Understanding of Cancer-Associated Fibroblasts. Nature Reviews Cancer, 20, 174-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chen, Z., Zhou, L., Liu, L., et al. (2020) Single-Cell RNA Se-quencing Highlights the Role of Inflammatory Cancer-Associated Fibroblasts in Bladder Urothelial Carcinoma. Nature Communications, 11, 5077. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Thongchot, S., Vidoni, C., Ferraresi, A., et al. (2021) Can-cer-Associated Fibroblast-Derived IL-6 Determines Unfavorable Prognosis in Cholangiocarcinoma by Affecting Au-tophagy-Associated Chemoresponse. Cancers (Basel), 13, 2134. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
郭嘉欣, 徐远义. 胃癌癌相关成纤维细胞研究进展[J]. 解放军医学杂志, 2021, 46(3): 306-310.
|
|
[11]
|
Yang, R., Wang, D., Han, S., et al. (2022) MiR-206 Suppresses the Deterioration of Intrahepatic Cholangiocarcinoma and Promotes Sen-sitivity to Chemotherapy by Inhibiting Interactions with Stromal CAFs. International Journal of Biological Sciences, 18, 43-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, H., Deng, T., Liu, R., et al. (2020) CAF Secreted miR-522 Suppresses Ferroptosis and Promotes Acquired Chemo-Resistance in Gastric Cancer. Molecular Cancer, 19, 43. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chen, Y., Song, Y., Du, W., et al. (2019) Tumor-Associated Macrophages: An Accomplice in Solid Tumor Progression. Journal of Biomedical Science, 26, 78. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Mantovani, A., Marchesi, F., Jaillon, S., et al. (2021) Tu-mor-Associated Myeloid Cells: Diversity and Therapeutic Targeting. Cellular & Molecular Immunology, 18, 566. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Laviron, M. and Boissonnas, A. (2019) Ontogeny of Tu-mor-Associated Macrophages. Frontiers in Immunology, 10, Article No. 1799. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
O’Neill, L.A., Kishton, R.J. and Rathmell, J. (2016) A Guide to Immunometabolism for Immunologists. Nature Reviews Immunology, 16, 553-565. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Mai, S.J., Liu, L., Jiang, J.J., et al. (2021) Oesophageal Squamous Cell Carcinoma-Associated IL-33 Rewires Macrophage Polarization towards M2 via Activating Ornithine Decarboxylase. Cell Proliferation, 54, e12960. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Shen, Z.L., Yan, Y.C., Ye, C., et al. (2016) The Effect of Vasohibin-1 Ex-pression and Tumor-Associated Macrophages on the Angiogenesis in Vitro and in Vivo. Tumor Biology, 37, 7267-7276. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yang, J., Li, X., Liu, X., et al. (2015) The Role of Tu-mor-Associated Macrophages in Breast Carcinoma Invasion and Metastasis. International Journal of Clinical and Ex-perimental Pathology, 8, 6656-6664.
|
|
[20]
|
Farmaki, E., Kaza, V., Chatzistamou, I., et al. (2020) CCL8 Promotes Post-partum Breast Cancer by Recruiting M2 Macrophages. iScience, 23, Article ID: 101217. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yoshie, O. and Matsushima, K. (2014) CCR4 and Its Ligands: From Bench to Bedside. International Immunology, 27, 11-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lu, J., Kang, J., Zhang, C., et al. (2015) The Role of IL-33/ST2L Signals in the Immune Cells. Immunology Letters, 164, 11-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kowalik, M. (2011) Yes-Associated Protein Regulation of Adap-tive Liver Enlargement and Hepatocellular Carcinoma Development in Mice. Hepatology, 53, 2086-2096. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Leushacke, M. and Barker, N. (2012) Lgr5 and Lgr6 as Markers to Study Adult Stem Cell Roles in Self-Renewal and Cancer. Oncogene, 31, 3009. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lei, X., Lei, Y., Li, J.K., et al. (2020) Immune Cells within the Tumor Microenvironment: Biological Functions and Roles in Cancer Immunotherapy. Cancer Letters, 470, 126-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Gavrielatou, N., Vathiotis, I., Economopoulou, P., et al. (2021) The Role of B Cells in Head and Neck Cancer. Cancers (Basel), 13, 5383. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yang, B., Zhang, Z., Chen, X., et al. (2022) An Asian-Specific Var-iant in Human IgG1 Represses Colorectal Tumorigenesis by Shaping the Tumor Microenvironment. Journal of Clinical Investigation, 132, e153454. [Google Scholar] [CrossRef]
|
|
[28]
|
Suarez-Sanchez, F.J., Lequerica-Fernandez, P., Rodrigo, J.P., et al. (2021) Tumor-Infiltrating CD20(+) B Lymphocytes: Significance and Prognostic Implications in Oral Cancer Microenvironment. Cancers (Basel), 13, 395. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhao, X., Liu, J., Ge, S., et al. (2019) Saikosaponin A Inhibits Breast Cancer by Regulating Th1/Th2 Balance. Frontiers in Pharmacology, 10, 624. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cui, C., Wang, J., Fagerberg, E., et al. (2021) Neoantigen-Driven B Cell and CD4 T Follicular Helper Cell Collaboration Promotes Anti-Tumor CD8 T Cell Responses. Cell, 184, 6101-6118e13. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Peiffer, L., Farahpour, F., Sriram, A., et al. (2020) BRAF and MEK Inhibition in Melanoma Patients Enables Reprogramming of Tumor Infiltrating Lymphocytes. Cancer Immunology, Immunotherapy, 70, 1635-1674. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lee, K.E., Spata, M., Bayne, L.J., et al. (2016) Hif1a Deletion Reveals Pro-Neoplastic Function of B Cells in Pancreatic Neoplasia. Cancer Discovery, 6, 256-269. [Google Scholar] [CrossRef]
|
|
[33]
|
Affara, N.I., Ruffell, B., Medler, T.R., et al. (2014) B Cells Regulate Macrophage Phenotype and Response to Chemotherapy in Squamous Carcinomas. Cancer Cell, 25, 809-821. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Allegra, C.J., Yothers, G., O’Connell, M.J., et al. (2012) Bevaci-zumab in Stage II-III Colon Cancer: 5-Year Update of the National Surgical Adjuvant Breast and Bowel Project C-08 Trial. Journal of Clinical Oncology, 31, 359-364. [Google Scholar] [CrossRef]
|