| [1] | 宋佩佩, 马文静, 王军, 等. 铁改性生物炭的制备及其在重金属污染土壤修复技术中的应用进展[J]. 环境工程学报, 2022, 16(12): 4018-4036. | 
                     
                                
                                    
                                        | [2] | Wan, X.M., Li, C.Y. and Parikh, S.J. (2020) Simultaneous Removal of Arsenic, Cadmium, and Lead from Soil by Iron-Modified Magnetic Biochar. Environmental Pollution, 261, Article ID: 114157. https://doi.org/10.1016/j.envpol.2020.114157
 | 
                     
                                
                                    
                                        | [3] | Li, Q.N., Liang, W.Y., Liu, F., et al. (2022) Simultaneous Immobilization of Arsenic, Lead and Cadmium by Magnesium-Aluminum Modified Biochar in Mining Soil. Journal of Environmental Management, 310, Article ID: 114792. https://doi.org/10.1016/j.jenvman.2022.114792
 | 
                     
                                
                                    
                                        | [4] | 潘亚男, 陈灿, 王欣, 等. 凤眼莲源多孔材料对土壤As、Hg、Cd溶出特性与化学形态的影响[J]. 环境科学学报, 2017, 37(6): 2342-2350. | 
                     
                                
                                    
                                        | [5] | Pan, H., Yang, X., Chen, H.B., et al. (2021) Pristine and Iron-Engineered Animal and Plant-Derived Biochars Enhanced Bacterial Abundance and Immobilized Arsenic and Lead in a Contaminated Soil. Science of the Total Environment, 763, Article ID: 144218. https://doi.org/10.1016/j.scitotenv.2020.144218
 | 
                     
                                
                                    
                                        | [6] | 马啸, 潘雨珂, 杨杰, 等. 生物炭改性及其应用研究进展[J]. 化工环保, 2022, 42(4): 386-393. | 
                     
                                
                                    
                                        | [7] | Wang, Y.M., Wang, S.W., Wang, C.Q., et al. (2020) Simultaneous Immo-bilization of Soil Cd(II) and As(V) by Fe-Modified Biochar. International Journal of Environmental Research and Public Health, 17, 827. https://doi.org/10.3390/ijerph17030827
 | 
                     
                                
                                    
                                        | [8] | Zhao, L., Cao, X.D., Masek, O., et al. (2013) Heterogeneity of Biochar Properties as a Function of Feed Stock Sources and Production Temperatures. Journal of Hazardous Materials, 256, 1-9. https://doi.org/10.1016/j.jhazmat.2013.04.015
 | 
                     
                                
                                    
                                        | [9] | 王向前, 胡学玉, 陈窈君, 等. 生物炭及改性生物炭对水环境中重金属的吸附固定作用[J]. 环境工程, 2016, 34(12): 32-37. | 
                     
                                
                                    
                                        | [10] | Qiao, J.T., Liu, T.X., Wang, X.Q., et al. (2018) Simultaneous Alleviation of Cadmium and Arsenic Accumulation in Rice by Applying Zero-Valent Iron and Biochar to Contaminated Paddy Soils. Chemosphere, 195, 260-271. https://doi.org/10.1016/j.chemosphere.2017.12.081
 | 
                     
                                
                                    
                                        | [11] | 崔志文, 任艳芳, 王伟, 等. 碱和磁复合改性小麦秸秆生物炭对水体中镉的吸附特性及机制[J]. 环境科学, 2020, 41(7): 3315-3325. | 
                     
                                
                                    
                                        | [12] | Mandal, S., Pu, S.Y., Wang, X.K., et al. (2020) Hierarchical Porous Structured Polysulfide Supported nZVI/Biochar and Efficient Immobilization of Selenium in the Soil. Science of the Total Environment, 708, Article ID: 134831. https://doi.org/10.1016/j.scitotenv.2019.134831
 | 
                     
                                
                                    
                                        | [13] | 熊静, 郭丽莉, 李书鹏, 等. 镉砷污染土壤钝化剂配方优化及效果研究[J]. 农业环境科学学报, 2019, 38(8): 1909-1918. | 
                     
                                
                                    
                                        | [14] | KashifIrshad, M., Chen, C., Noman, A., et al. (2020) Goethite-Modified Biochar Restricts the Mobility and Transfer of Cadmium in Soil-Rice System. Chemosphere, 242, Article ID: 125152. https://doi.org/10.1016/j.chemosphere.2019.125152
 | 
                     
                                
                                    
                                        | [15] | 范贝贝, 赵磊, 刘建军, 等. 金属氧化物改性生物炭对镉污染土壤菠菜生长和镉积累的影响[J]. 农业环境科学学报, 2022, 41(6): 1261-1270. | 
                     
                                
                                    
                                        | [16] | 吕鹏, 李莲芳, 黄晓雅.改性生物炭修复砷镉复合污染土壤研究进展[J/OL]. 环境科学: 1-20. https://doi.org/10.13227/j.hjkx.202207032, 2022-10-25.
 | 
                     
                                
                                    
                                        | [17] | Gong, H.B., Zhao, L., Rui, X., et al. (2022) A Re-view of Pristine and Modified Biochar Immobilizing Typical Heavy Metals in Soil: Applications and Challenges. Journal of Hazardous Materials, 432, Article ID: 128668. https://doi.org/10.1016/j.jhazmat.2022.128668
 | 
                     
                                
                                    
                                        | [18] | Da Silva Medeiros, D.C.C., et al. (2021) Pristine and Engi-neered Biochar for the Removal of Contaminants Co-Existing in Several Types of Industrial Wastewaters: A Critical Review. Science of the Total Environment, 809, Article ID: 151120. https://doi.org/10.1016/j.scitotenv.2021.151120
 | 
                     
                                
                                    
                                        | [19] | Fang, J., Gao, B., Zimmerman, A.R., et al. (2016) Physically (CO2) Activated Hydrochars from Hickory and Peanut Hull: Preparation, Characterization, and Sorption of Methylene Blue, Lead, Copper, and Cadmium. RSC Advances, 6, 24906-24911. https://doi.org/10.1039/C6RA01644H
 | 
                     
                                
                                    
                                        | [20] | Pincus, L.N., Rudel, H.E., Petrovic, P.V., et al. (2020) Exploring the Mechanisms of Selectivity for Environmentally Significant Oxo-Anion Removal during Water Treatment: A Review of Common Competing Oxo-Anion Sand Tools for Quantifying Selective Adsorption. Environmental Science & Technology, 54, 9769-9790. https://doi.org/10.1021/acs.est.0c01666
 | 
                     
                                
                                    
                                        | [21] | 毛欣宇, 翟森茂, 姜小三, 等. 不同改性生物炭对农田土壤理化性质及铅、镉钝化的影响机制研究[J/OL]. 环境工程: 1-14. https://kns.cnki.net/kcms/detail/11.2097.X.20220803.2033.020.html, 2023-03-20.
 | 
                     
                                
                                    
                                        | [22] | Wang, S.S., Gao, B. and Li, Y.C. (2016) Enhanced Arsenic Removal by Biochar Modified with Nickel (Ni) and Manganese (Mn) Oxyhydroxides. Journal of Industrial Engineering Chemistry, 37, 361-365. https://doi.org/10.1016/j.jiec.2016.03.048
 | 
                     
                                
                                    
                                        | [23] | Lyu, P., Li, L.F., Huang, X.Y., et al. (2022) Pre-Magnetic Bamboo Biochar Cross-Linked Ca-Mg-Al Layered Double-Hydroxide Composite: High-Efficiency Removal of As(III) and Cd(II) from Aqueous Solutions and Insight into the Mechanism of Simultaneous Purification. Science of the Total En-vironment, 823, Article ID: 153743. https://doi.org/10.1016/j.scitotenv.2022.153743
 | 
                     
                                
                                    
                                        | [24] | Kurian, M. (2020) Cerium Oxide Based Materials for Water Treatment—A Review. Journal of Environmental Chemical Engineering, 8, Article ID: 104439. https://doi.org/10.1016/j.jece.2020.104439
 | 
                     
                                
                                    
                                        | [25] | Yang, D., Yang, S.Y., Yuan, H.H., et al. (2021) Co-Benefits of Biochar-Supported Nanoscale Zero-Valent Iron in Simultaneously Stabilizing Soil Heavy Metals and Reducing their Bioaccessibility. Journal of Hazardous Materials, 418, Article ID: 126292. https://doi.org/10.1016/j.jhazmat.2021.126292
 | 
                     
                                
                                    
                                        | [26] | Qian, L.B., Zhang, W.Y., Yan, J.C., et al. (2017) Nanoscale Zero-Valent Iron Supported by Biochars Produced at Different Temperatures: Synthesis Mechanism and Effect on Cr(VI) Removal. Environmental Pollution, 223, 153-160. https://doi.org/10.1016/j.envpol.2016.12.077
 | 
                     
                                
                                    
                                        | [27] | Jiang, S.Y., Yan, L.L., Wang, R.K., et al. (2022) Recyclable Nitrogen-Doped Biochar via Low-Temperature Pyrolysis for Enhanced Lead(II) Removal. Chemosphere, 286, Article ID: 131666. https://doi.org/10.1016/j.chemosphere.2021.131666
 |