|
[1]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hirschhorn, T. and Stockwell, B.R. (2019) The Development of the Concept of Ferroptosis. Free Radical Biology & Medicine, 133, 130-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Yang, W.S., SriRamaratnam, R., Welsch, M.E., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fuchs, Y. and Steller, H. (2011) Programmed Cell Death in Animal Development and Disease. Cell, 147, 742-758. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yu, H., Guo, P., Xie, X., et al. (2017) Ferroptosis, a New Form of Cell Death, and Its Relationships with Tumourous Diseases. Journal of Cellular and Molecular Medicine, 21, 648-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hao, S., Liang, B., Huang, Q., et al. (2018) Metabolic Networks in Fer-roptosis. Oncology Letters, 15, 5405-5411. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
DeHart, D.N., Fang, D., Heslop, K., et al. (2018) Opening of Voltage Dependent Anion Channels Promotes Reactive Oxygen Species Generation, Mitochondrial Dysfunction and Cell Death in Cancer Cells. Biochemical Pharmacology, 148, 155-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Stoyanovsky, D.A., Tyurina, Y.Y., Shrivastava, I., et al. (2019) Iron Catalysis of Lipid Peroxidation in Ferroptosis: Regulated Enzymatic or Random Free Radical Reaction? Free Radical Biology & Medicine, 133, 153-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Xie, Y., Hou, W., Song, X., et al. (2016) Ferroptosis: Process and Function. Cell Death and Differentiation, 23, 369-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mecha-nisms, Biology and Role in Disease. Nature Reviews. Molecular Cell Biology, 22, 266-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Xu, T., Ding, W., Ji, X., et al. (2019) Molecular Mechanisms of Ferroptosis and Its Role in Cancer Therapy. Journal of Cellular and Molecular Medicine, 23, 4900-4912. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Huang, C., Santofimia-Castaño, P., Liu, X., et al. (2021) NUPR1 Inhibi-tor ZZW-115 Induces Ferroptosis in a Mitochondria-Dependent Manner. Cell Death Discovery, 7, 269. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wunderer, F., Traeger, L., Sigurslid, H.H., et al. (2020) The Role of Hepcidin and Iron Homeostasis in Atherosclerosis. Pharmacological Research, 153, Article ID: 104664. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Anderson, G.J., Frazer, D.M. and McLaren, G.D. (2009) Iron Absorption and Metabolism. Current Opinion in Gastroenterology, 25, 129-135. [Google Scholar] [CrossRef]
|
|
[16]
|
Kerins, M.J. and Ooi, A. (2018) The Roles of NRF2 in Modulating Cellular Iron Homeostasis. Antioxidants & Redox Signaling, 29, 1756-1773. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yang, W.S. and Stockwell, B.R. (2016) Ferroptosis: Death by Lipid Peroxidation. Trends in Cell Biology, 26, 165-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Doll, S. and Conrad, M. (2017) Iron and Ferroptosis: A Still Ill-Defined Liaison. IUBMB Life, 69, 423-434. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Dowdle, W.E., Nyfeler, B., Nagel, J., et al. (2014) Selective VPS34 Inhibitor Blocks Autophagy and Uncovers a Role for NCOA4 in Ferritin Degradation and Iron Homeostasis in Vivo. Nature Cell Biology, 16, 1069-1079. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, M.R., Zhu, W.T. and Pei, D.S. (2021) System Xc: A Key Regulatory Target of Ferroptosis in Cancer. Investigational New Drugs, 39, 1123-1131. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bridges, R., Lutgen, V., Lobner, D. and Baker, D.A. (2012) Thinking outside the Cleft to Understand Synaptic Activity: Contribution of the Cystine-Glutamate Antiporter (System xc-) to Normal and Pathological Glutamatergic Signaling. Pharmacological Reviews, 64, 780-802. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, C., Deng, X., Xie, X., et al. (2018) Activation of Glutathione Pe-roxidase 4 as a Novel Anti-Inflammatory Strategy. Frontiers in Pharmacology, 9, 1120. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Proneth, B. and Conrad, M. (2019) Ferroptosis and Necroinflamma-tion, a Yet Poorly Explored Link. Cell Death and Differentiation, 26, 14-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chen, X., Xu, S., Zhao, C. and Liu, B. (2019) Role of TLR4/NADPH Oxidase 4 Pathway in Promoting Cell Death through Autophagy and Ferroptosis during Heart Failure. Biochemical and Biophysical Research Communications, 516, 37-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
王华, 梁延春. 中国心力衰竭诊断和治疗指南2018 [J]. 中华心血管病杂志, 2018, 46(10): 760-789.
|
|
[26]
|
Mosterd, A. and Hoes, A.W. (2007) Clinical Epidemiology of Heart Fail-ure. Heart (British Cardiac Society), 93, 1137-1146. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Moe, G.W. and Marín-García, J. (2016) Role of Cell Death in the Progression of Heart Failure. Heart Failure Reviews, 21, 157-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
胡盛寿, 高润霖, 刘力生, 朱曼璐, 王文, 王拥军, 吴兆苏, 李惠君, 顾东风, 杨跃进, 郑哲, 陈伟伟. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220.
|
|
[29]
|
方学贤, 蔡昭贤, 王浩, 闵军霞, 王福俤. 铁过载及铁死亡在心脏疾病中的研究进展[J]. 科学通报, 2019, 64(Z2): 2974-2987.
|
|
[30]
|
Liu, B., Zhao, C., Li, H., et al. (2018) Puerarin Protects against Heart Failure Induced by Pressure Overload through Mitigation of Ferroptosis. Biochemical and Biophysical Research Communications, 497, 233-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bulluck, H., Rosmini, S., Abdel-Gadir, A., et al. (2016) Residual Myocardial Iron Following Intramyocardial Hemorrhage during the Convalescent Phase of Reperfused ST-Segment-Elevation Myocardial Infarction and Adverse Left Ventricular Remodeling. Circulation: Cardiovascular Imaging, 9, e004940. [Google Scholar] [CrossRef]
|
|
[32]
|
Berdoukas, V., Coates, T.D. and Cabantchik, Z.I. (2015) Iron and Oxidative Stress in Cardiomyopathy in Thalassemia. Free Radical Biology & Medicine, 88, 3-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Fang, X., Wang, H., Han, D., et al. (2019) Ferroptosis as a Target for Protection against Cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 116, 2672-2680. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yu, H., Yang, C., Jian, L., et al. (2019) Sulfasalazine-Induced Fer-roptosis in Breast Cancer Cells Is Reduced by the Inhibitory Effect of Estrogen Receptor on the Transferrin Receptor. Oncology Reports, 42, 826-838. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, S. and Huang, Y. (2022) Ferroptosis: An Iron-Dependent Cell Death form Linking Metabolism, Diseases, Immune Cell and Targeted Therapy. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 24, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Schubert, J., Lindahl, B., Melhus, H., et al. (2021) Low-Density Lipoprotein Cholesterol Reduction and Statin Intensity in Myocardial Infarction Patients and Major Adverse Outcomes: A Swedish Nationwide Cohort Study. European Heart Journal, 42, 243-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Katsiki, N., Doumas, M. and Mikhailidis, D.P. (2016) Lipids, Statins and Heart Failure: An Update. Current Pharmaceutical Design, 22, 4796-4806. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ning, D., Yang, X., Wang, T., et al. (2021) Atorvas-tatin Treatment Ameliorates Cardiac Function and Remodeling Induced by Isoproterenol Attack through Mitigation of Ferroptosis. Biochemical and Biophysical Research Communications, 574, 39-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Li, N., Wang, W., Zhou, H., et al. (2020) Ferritinophagy-Mediated Ferroptosis Is Involved in Sepsis-Induced Cardiac Injury. Free Radical Biology & Medicine, 160, 303-318. [Google Scholar] [CrossRef] [PubMed]
|