|
[1]
|
邹小农, 贾漫漫, 王鑫, 支修益. 《2020全球癌症报告》要点解读[J]. 中国胸心血管外科临床杂志, 2021, 28(1): 11-18.
|
|
[2]
|
Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., et al. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
van Dalen, E.C., van der Pal, H.J.H., Kok, W.E.M., Caron, H.N. and Kremer, L.C.M. (2006) Clinical Heart Failure in a Cohort of Chil-dren Treated with Anthracyclines: A Long-Term Follow-Up Study. European Journal of Cancer, 42, 3191-3198. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Mulrooney, D.A., Yeazel, M.W., Kawashima, T., Mertens, A.C., Mitby, P., Stovall, M., et al. (2009) Cardiac Outcomes in a Cohort of Adult Survivors of Childhood and Adolescent Cancer: Retrospective Analysis of the Childhood Cancer Survivor Study Cohort. BMJ, 339, Article No. b4606. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Herrmann, J. (2020) Adverse Cardiac Effects of Cancer Therapies: Cardio-toxicity and Arrhythmia. Nature Reviews Cardiology, 17, 474-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
McGowan, J.V., Chung, R., Maulik, A., Piotrowska, I., Walker, J.M. and Yellon, D.M. (2017) Anthracycline Chemotherapy and Cardiotoxicity. Cardiovascular Drugs and Therapy, 31, 63-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shabalala, S., Muller, C.J.F., Louw, J. and Johnson, R. (2017) Polyphenols, Autophagy and Doxorubicin-Induced Cardiotoxicity. Life Sciences, 180, 160-170. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ferreira de Souza, T., Quinaglia AC Silva, T., Osorio Costa, F., Shah, R., Neilan, T. G., Velloso, L., et al. (2018) Anthracycline Therapy Is Associated with Cardiomyocyte Atrophy and Pre-clinical Manifestations of Heart Disease. JACC: Cardiovascular Imaging, 11, 1045-1055. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Swain, S.M., Whaley, F.S. and Ewer, M.S. (2003) Congestive Heart Failure in Patients Treated with Doxorubicin: A Retrospective Analysis of Three Trials. Cancer, 97, 2869-2879. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bristow, M.R., Thompson, P.D., Martin, R.P., Mason, J.W., Billingham, M.E. and Harrison, D.C. (1978) Early Anthracycline Cardiotoxicity. The American Journal of Medicine, 65, 823-832. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Gottdiener, J.S., Appelbaum, F.R., Ferrans, V.J., Deisseroth, A. and Ziegler, J. (1981) Cardiotoxicity Associated with High-Dose Cyclophosphamide Therapy. Archives of Internal Medicine, 141, 758-763. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zamorano, J.L., Lancellotti, P., Rodriguez Muñoz, D., Aboyans, V., Asteggiano, R., Galderisi, M., et al. (2016) 2016 ESC Position Paper on Cancer Treatments and Cardio-vascular Toxicity Developed under the Auspices of the ESC Committee for Practice Guidelines: The Task Force for Cancer Treatments and Cardiovascular Toxicity of the European Society of Cardiology (ESC). European Heart Journal, 37, 2768-2801. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ewer, M.S. and Ewer, S.M. (2015) Cardiotoxicity of anticancer treatments. Nature Reviews Cardiology, 12, 547-558. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Martel, S., Maurer, C., Lambertini, M., Pondé, N. and De Azambuja, E. (2017) Breast Cancer Treatment-Induced Cardiotoxicity. Expert Opinion on Drug Safety, 16, 1021-1038. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Fanous, I. and Dillon, P. (2016) Cancer Treatment-Related Cardiac Toxicity: Prevention, Assessment and Management. Medical Oncology, 33, Article No. 84. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Jerusalem, G., Moonen, M., Freres, P. and Lancellotti, P. (2015) The European Association of Cardiovascular Imaging/heart Failure Association Cardiac Oncology Toxicity Registry: Long-Term Benefits for Breast Cancer Treatment. Future Oncology, 11, 2791-2794. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Giordano, G., Spagnuolo, A., Olivieri, N., Corbo, C., Campagna, A., Spagnoletti, I., et al. (2016) Cancer Drug Related Cardiotoxicity during Breast Cancer Treatment. Expert Opinion on Drug Safety, 15, 1063-1074. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Pondé, N.F., Lambertini, M. and de Azambuja, E. (2016) Twenty Years of Anti-HER2 Therapy-Associated Cardiotoxicity. ESMO Open, 1, e000073. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Barish, R., Gates, E. and Barac, A. (2019) Trastuzumab-Induced Cardiomyopathy. Cardiology Clinics, 37, 407-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Dunet, V., Schwitter, J., Meuli, R. and Beigelman-Aubry, C. (2016) Incidental Extracardiac Findings on Cardiac MR: Systematic Review and Meta-Analysis. Journal of Magnetic Resonance Imaging, 43, 929-939. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lambert, J., Lamacie, M., Thampinathan, B., Altaha, M.A., Esmaeilzadeh, M., Nolan, M., et al. (2020) Variability in Echocardiography and MRI for Detection of Cancer Therapy Cardiotoxicity. Heart, 106, 817-823. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Halliday, B.P., Senior, R. and Pennell, D.J. (2021) Assessing Left Ventricular Systolic Function: From Ejection Fraction to Strain Analysis. European Heart Journal, 42, 789-797. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Plana, J.C., Galderisi, M., Barac, A., Ewer, M.S., Ky, B., Scher-rer-Crosbie, M., et al. (2014) Expert Consensus for Multimodality Imaging Evaluation of Adult Patients during and after Cancer Therapy: A Report from the American Society of Echocardiography and the European Association of Cardiovas-cular Imaging. Journal of the American Society of Echocardiography, 27, 911-939. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ewer, M.S., Ali, M.K., Mackay, B., Wallace, S., Valdivieso, M., Legha, S.S., et al. (1984) A Comparison of Cardiac Biopsy Grades and Ejection Fraction Estimations in Patients Receiv-ing Adriamycin. Journal of Clinical Oncology, 2, 112-117. [Google Scholar] [CrossRef]
|
|
[25]
|
Jolly, M.-P., Jordan, J.H., Meléndez, G.C., McNeal, G.R., D’Agostino, R.B. and Hundley, W.G. (2017) Automated Assess-ments of Circumferential Strain from Cine CMR Correlate with LVEF Declines in Cancer Patients Early after Receipt of Cardio-Toxic Chemotherapy. Journal of Cardiovascular Magnetic Resonance, 19, Article No. 59. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Gottbrecht, M., Kramer, C.M. and Salerno, M. (2019) Native T1 and Extracellular Volume Measurements by Cardiac MRI in Healthy Adults: A Meta-Analysis. Radiology, 290, 317-326. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Giusca, S., Korosoglou, G., Montenbruck, M., Gersak, B., Schwarz, A.K., Esch, S., et al. (2021) Multiparametric Early Detection and Prediction of Cardiotoxicity Using Myocardi-al Strain, T1 and T2 Mapping, and Biochemical Markers: A Longitudinal Cardiac Resonance Imaging Study During 2 Years of Follow-up. Circulation: Cardiovascular Imaging, 14, e012459. [Google Scholar] [CrossRef]
|
|
[28]
|
Pituskin, E., Mackey, J.R., Koshman, S., Jassal, D., Pitz, M., Haykowsky, M.J., et al. (2017) Multidisciplinary Approach to Novel Therapies in Cardio-Oncology Research (MANTICORE 101-Breast): A Randomized Trial for the Prevention of Trastuzumab-Associated Cardiotoxicity. Journal of Clinical Oncology, 35, 870-877. [Google Scholar] [CrossRef]
|
|
[29]
|
Neilan, T.G., Coelho-Filho, O.R., Pena-Herrera, D., Shah, R.V., Jerosch-Herold, M., Francis, S.A., et al. (2012) Left Ventricular Mass in Patients with a Cardiomyopathy after Treatment with Anthracyclines. The American Journal of Cardiology, 110, 1679-1686. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Barthur, A., Brezden-Masley, C., Connelly, K.A., Dhir, V., Chan, K.K.W., Haq, R., et al. (2017) Longitudinal Assessment of Right Ventricular Structure and Function by Cardio-vascular Magnetic Resonance in Breast Cancer Patients Treated with Trastuzumab: A Prospective Observational Study. Journal of Cardiovascular Magnetic Resonance, 19, Article No. 44. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ylänen, K., Poutanen, T., Savikurki-Heikkilä, P., Rinta-Kiikka, I., Eerola, A. and Vettenranta, K. (2013) Cardiac Magnetic Resonance Imaging in the Evaluation of the Late Effects of Anthracyclines Among Long-Term Survivors of Childhood Cancer. Journal of the American College of Cardiology, 61, 1539-1547. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chang, W.-T., Shih, J.-Y., Feng, Y.-H., Chiang, C.-Y., Kuo, Y.H., Chen, W.-Y., et al. (2016) The Early Predictive Value of Right Ventricular Strain in Epirubicin-Induced Cardiotoxicity in Patients with Breast Cancer. Acta Cardiological Sinica, 32, 550-559.
|
|
[33]
|
Chen, L., Huang, J., Wu, W., Ta, S. and Xie, X. (2019) The Impact of Right Ventricular Function on Prognosis in Patients with Stage III Non-Small Cell Lung Cancer after Concurrent Chemoradiotherapy. The International Journal of Cardiovascular Imaging, 35, 1009-1017. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
de Ville de Goyet, M., Brichard, B., Robert, A., Renard, L., Veyckemans, F., Vanhoutte, L. and Moniotte, S. (2015) Prospective Cardiac MRI for the Analysis of Biventricular Function in Children Undergoing Cancer Treatments. Pediatric Blood & Cancer, 62, 867-874. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Evin, M., Cluzel, P., Lamy, J., Rosenbaum, D., Kusmia, S., Defrance, C., et al. (2015) Assessment of Left Atrial Function by Mri Myocardial Feature Tracking. Journal of Magnetic Resonance Im-aging, 42, 379-389. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Messroghli, D.R., Moon, J.C., Ferreira, V.M., Grosse-Wortmann, L., He, T., Kellman, P., et al. (2017) Clinical Recommendations for Cardiovascular Magnetic Resonance Mapping of T1, T2, T2* and Extracellular Volume: A Consensus Statement by the Society for Cardiovascular Magnetic Resonance (SCMR) En-dorsed by the European Association for Cardiovascular Imaging (EACVI). Journal of Cardiovascular Magnetic Reso-nance, 19, Article No. 75. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Soufer, A. and Baldassarre, L.A. (2019) The Role of Cardiac Magnetic Resonance Imaging to Detect Cardiac Toxicity from Cancer Therapeutics. Current Treatment Options in Car-diovascular Medicine, 21, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Park, C.J., Branch, M.E., Vasu, S. and Melendez, G.C. (2020) The Role of Cardiac MRI in Animal Models of Cardiotoxicity: Hopes and Challenges. Journal of Cardiovascular Translational Research, 13, 367-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Haslbauer, J.D., Lindner, S., Valbuena-Lopez, S., Zainal, H., Zhou, H., D’Angelo, T., et al. (2019) CMR Imaging Biosignature of Cardiac Involvement Due to Cancer-Related Treat-ment by T1 and T2 Mapping. International Journal of Cardiology, 275, 179-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Hong, Y.J., Park, H.S., Park, J.K., Han, K., Park, C.H., Kim, T.K., et al. (2017) Early Detection and Serial Monitoring of Anthracycline-Induced Cardiotoxicity Using T1-Mapping Cardiac Magnetic Resonance Imaging: An Animal Study. Scientific Reports, 7, Article No. 2663. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Galán-Arriola, C., Lobo, M., Vílchez-Tschischke, J.P., López, G.J., de Molina-Iracheta, A., Pérez-Martínez, C., et al. (2019) Serial Magnetic Resonance Imaging to Identify Early Stages of Anthracycline-Induced Cardiotoxicity. Journal of the American College of Cardiology, 73, 779-791. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Modi, K., Joppa, S., Chen, K.-H.A., Athwal, P.S.S., Okasha, O., Velangi, P.S., et al. (2020) Myocardial Damage Assessed by Late Gadolinium Enhancement on Cardiovascular Magnetic Resonance Imaging in Cancer Patients Treated with Anthracyclines and/or Trastuzumab. European Heart Jour-nal-Cardiovascular Imaging, 22, 427-434. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Lightfoot, J.C., D’Agostino Jr., R.B., Hamilton, C.A., Jordan, J., Torti, F.M., Kock, N.D., et al. (2010) Novel Approach to Early Detection of Doxorubicin Cardiotoxicity by Gadolini-um-Enhanced Cardiovascular Magnetic Resonance Imaging in an Experimental Model. Circulation: Cardiovascular Im-aging, 3, 550-558. [Google Scholar] [CrossRef]
|
|
[44]
|
Varricchi, G., Ameri, P., Cadeddu, C., Ghigo, A., Ma-donna, R., Marone, G., et al. (2018) Antineoplastic Drug-Induced Cardiotoxicity: A Redox Perspective. Frontiers in Physiology, 9, Article 167. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Greenwood, J.P., Maredia, N., Younger, J.F., Brown, J.M., Nixon, J., Everett, C.C., et al. (2012) Cardiovascular Magnetic Resonance and Single-Photon Emission Computed Tomography for Diagnosis of Coronary Heart Disease (CE-MARC): A Prospective Trial. Lancet, 379, 453-460. [Google Scholar] [CrossRef]
|
|
[46]
|
Lipinski, M.J., McVey, C.M., Berger, J.S., Kramer, C.M. and Salerno, M. (2013) Prognostic Value of Stress Cardiac Magnetic Resonance Imaging in Patients with Known or Suspected Coronary Artery Disease: A Systematic Review and Meta-Analysis. Journal of the American College of Car-diology, 62, 826-838. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Schwitter, J., Wacker, C.M., Wilke, N., Al-Saadi, N., Sauer, E., Huettle, K., et al. (2013) MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coro-nary Artery Disease Trial: Perfusion-Cardiac Magnetic Resonance vs. Single-Photon Emission Computed Tomography for the Detection of Coronary Artery Disease: A Comparative Multicentre, Multivendor Trial. European Heart Journal, 34, 775-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Pack, N.A. and DiBella, E.V.R. (2010) Comparison of Myocardial Perfusion Estimates from Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Four Quantitative Analysis Methods. Magnetic Resonance in Medicine, 64, 125-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Nguyen, V.B.L. (2018) Stress Cardiovascular Magnetic Resonance for Evaluation of Antineoplastic Associated Cardiotoxicity in a Re-al-World Cohort of Breast Cancer Patients. Society of Cardiovascular Magnetic Resonance Scientific Sessions.
|
|
[50]
|
Liu, A., Wijesurendra, R.S., Liu, J.M., Greiser, A., Jerosch-Herold, M., Forfar, J.C., et al. (2018) Gadolinium-Free Cardiac MR Stress T1-Mapping to Distinguish Epicardial from Microvascular Coronary Disease. Journal of the American Col-lege of Cardiology, 71, 957-968. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Boutouyrie, P., Tropeano, A.I., Asmar, R., Gautier, I., Benetos, A., Lacolley, P., et al. (2002) Aortic Stiffness Is an Independent Predictor of Primary Coronary Events in Hypertensive Patients: A Longitudinal Study. Hypertension, 39, 10-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Chaosuwannakit, N., D’Agostino, R., Hamilton, C.A., Lane, K.S., Ntim, W.O., Lawrence, J., et al. (2010) Aortic Stiffness Increases upon Receipt of Anthracycline Chemotherapy. Journal of Clinical Oncology, 28, 166-172. [Google Scholar] [CrossRef]
|
|
[53]
|
Drafts, B.C., Twomley, K.M., D’Agostino, R., Lawrence, J., Avis, N., Ellis, L.R., et al. (2013) Low to Moderate Dose Anthracycline-Based Chemotherapy Is Associated with Early Non-invasive Imaging Evidence of Subclinical Cardiovascular Disease. JACC: Cardiovascular Imaging, 6, 877-885. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Grover, S., Lou, P.W., Bradbrook, C., Cheong, K., Kotasek, D., Leong, D.P., et al. (2015) Early and Late Changes in Markers of Aortic Stiffness with Breast Cancer Therapy. Internal Medicine Journal, 45, 140-147. [Google Scholar] [CrossRef] [PubMed]
|