| [1] | Stocker, T.F., Qin, D., Plattner, G.K., et al. (2013) Climate Change 2013: The Physical Science Basis. | 
                     
                                
                                    
                                        | [2] | Reich, P.B., Sendal, K.M. and Stefanski, A. (2018) Effects of Climate Warming on Photosynthesis in Boreal Tree Species Depend on Soil Moisture. Nature, 562, 263-267. https://doi.org/10.1038/s41586-018-0582-4
 | 
                     
                                
                                    
                                        | [3] | Crowther, T.W., Todd-Brown, K.E.O. and Rowe, C.W. (2016) Quantifying Global Soil Carbon Losses in Response to Warming. Nature, 540, 104-108. | 
                     
                                
                                    
                                        | [4] | Pries, C.E.H., Castanha, C., Porras, R., et al. (2017) The Whole-Soil Carbon Flux in Response to Warming. Science, 1319, 1420-1423. https://doi.org/10.1126/science.aal1319
 | 
                     
                                
                                    
                                        | [5] | Van Gestel, N., Shi, Z., Van Groenigen, K.J., et al. (2018) Predicting Soil Carbon Loss with Warming. Nature, 554, E4-E5. https://doi.org/10.1038/nature25745
 | 
                     
                                
                                    
                                        | [6] | Wang, S.H., Zhang, Y.G., Ju, W.M., et al. (2020) Recent Global Decline of CO2 Fertilization Effects on Vegetation Photosynthesis. Science, 370, 1295-1300. | 
                     
                                
                                    
                                        | [7] | Aljazairi, S., Arias, C. and Nogues, S. (2014) Carbon and Nitrogen Allocation and Partitioning in Traditional and Modern Wheat Genotypes under Preindustrial and Future CO2 Conditions. Plant Biology, 17, 647-659. https://doi.org/10.1111/plb.12280
 | 
                     
                                
                                    
                                        | [8] | Parvin, S., Uddin, S., Tausz-Posch, S., et al. (2020) Carbon Sink Strength of Nodules but Not Other Organs Modulates Photosynthesis of Faba Bean (Vicia faba) Grown under Elevated [CO2] and Different Water Supply. New Phytologist, 227, 132-145. https://doi.org/10.1111/nph.16520
 | 
                     
                                
                                    
                                        | [9] | Jakobsen, I., Smith, S.E., Smith, F.A., et al. (2016) Plant Growth Responses to Elevated Atmospheric CO2 Are Increased by Phosphorus Sufficiency but Not by Arbuscular Mycorrhizas. Journal of Experimental Botany, 67, 6173-6186. https://doi.org/10.1093/jxb/erw383
 | 
                     
                                
                                    
                                        | [10] | Dabu, X., Li, S. and Cai, Z. (2019) The Effect of Potassium on Photosynthetic Acclimation in Cucumber during CO2 Enrichment. Photosynthetica, 57, 640-645. https://doi.org/10.32615/ps.2019.073
 | 
                     
                                
                                    
                                        | [11] | Shi, S., Luo, X., Dong, X., et al. (2021) Arbuscular Mycorrhization Enhances Nitrogen, Phosphorus and Potassium Accumulation in Vicia faba by Modulating Soil Nutrient Balance under Elevated CO2. Fungi (Basel), 7, Article 361. https://doi.org/10.3390/jof7050361
 | 
                     
                                
                                    
                                        | [12] | Kimball, B.A., Mauney, J.R. and Nakayama, F.S. (1993) Effects of Increasing Atmospheric CO2 on Vegetation. Vegetation, 104, 65-75. https://doi.org/10.1007/BF00048145
 | 
                     
                                
                                    
                                        | [13] | Ainsworth, E.A. and Long, S.P. (2005) What Have We Learned from 15 Years of Free-Air CO2 Enrichment (FACE)? A Meta-Analytic Review of the Responses of Photosynthesis, Canopy Properties and Plant Production to Rising CO2. New Phytologist, 165, 351-371. https://doi.org/10.1111/j.1469-8137.2004.01224.x
 | 
                     
                                
                                    
                                        | [14] | Igarashi, M., Yi, Y. and Yano, K. (2021) Revisiting Why Plants Become N Deficient under Elevated CO2: Importance to Meet N Demand Regardless of the Fed-Form. Frontiers in Plant Science, 12, Article 726186. https://doi.org/10.3389/fpls.2021.726186
 | 
                     
                                
                                    
                                        | [15] | 刘金山, 戴健, 刘洋, 等. 过量施氮对旱地土壤碳、氮及供氮能力的影响[J]. 植物营养与肥料学报, 2015, 21(1): 112-120. | 
                     
                                
                                    
                                        | [16] | 王亚杰, 段廷玉. AM真菌对植物挥发性物质影响的研究现状与展望[J]. 草地学报, 2020, 28(5): 1185-1195. | 
                     
                                
                                    
                                        | [17] | Smith, S.E. and Read, D.J. (2010) Mycorrhizal Symbiosis. Academic Press, Cambridge. | 
                     
                                
                                    
                                        | [18] | Birgander, J., Rousk, J. and Olsson, P.A. (2017) Warmer Winters Increase the Rhizosphere Carbon Flow to Mycorrhizal Fungi More than to Other Microorganisms in a Temperate Grassland. Global Change Biology, 23, 5372-5382. https://doi.org/10.1111/gcb.13803
 | 
                     
                                
                                    
                                        | [19] | Rillig, M.C., Wright, S.F., Shaw, M.R., et al. (2002) Artificial Climate Warming Positively Affects Arbuscular Mycorrhizae but Decreases Soil Aggregate Water Stability in an Annual Grassland. Oikos, 97, 52-58. https://doi.org/10.1034/j.1600-0706.2002.970105.x
 | 
                     
                                
                                    
                                        | [20] | Oliveira, T.C., Cabral, J.S.R., Santana, L.R., et al. (2022) The Arbuscular Mycorrhizal Fungus Rhizophagus clarus Improves Physiological Tolerance to Drought Stress in Soybean Plants. Scientific Reports, 12, Article No. 9044. https://doi.org/10.1038/s41598-022-13059-7
 | 
                     
                                
                                    
                                        | [21] | Qin, W., Yan, H., Zou, B., et al. (2021) Arbuscular Mycorrhizal Fungi Alleviate Salinity Stress in Peanut: Evidence from Pot-Grown and Field Experiments. Food and Energy Security, 10, e314. https://doi.org/10.1002/fes3.314
 | 
                     
                                
                                    
                                        | [22] | Nanjareddy, K., Arthikala, M.K., Gómez, B.M., et al. (2017) Differentially Expressed Genes in Mycorrhized and Nodulated Roots of Common Bean Are Associated with Defense, Cell Wall Architecture, N Metabolism, and P Metabolism. PLOS ONE, 12, e0182328. https://doi.org/10.1371/journal.pone.0182328
 | 
                     
                                
                                    
                                        | [23] | Xiao, X., Chen, J., Liao, X., et al. (2022) Different Arbuscular Mycorrhizal Fungi Established by Two Inoculation Methods Improve Growth and Drought Resistance of Cinnamomum migao Seedlings Differently. Biology, 11, Article 220. https://doi.org/10.3390/biology11020220
 | 
                     
                                
                                    
                                        | [24] | Kooi, C.J., Reich, M., Löw, M., et al. (2016) Growth and Yield Stimulation under Elevated CO2 and Drought: A Meta-Analysis on Crops. Environmental and Experimental Botany, 122, 150-157. https://doi.org/10.1016/j.envexpbot.2015.10.004
 | 
                     
                                
                                    
                                        | [25] | Wicklow, D.T. and Carroll, G.C. (1981) The Fungal Community: Its Organization and Role in the Ecosystem. Marcel Dekker, New York. | 
                     
                                
                                    
                                        | [26] | Allison, S., Hanson, C. and Treseder, K. (2007) Nitrogen Fertilization Reduces Diversity and Alters Community Structure of Active Fungi in Boreal Ecosystems. Soil Biology and Biochemistry, 39, 1878-1887. https://doi.org/10.1016/j.soilbio.2007.02.001
 | 
                     
                                
                                    
                                        | [27] | 宋鸽, 王全成, 郑勇, 等. 丛枝菌根真菌对大气CO2浓度升高和增温响应研究进展[J]. 应用生态学报, 2022, 33(6): 1709-1718. | 
                     
                                
                                    
                                        | [28] | Sanders, I., et al. (1998) Increased Allocation to External Hyphae of Arbuscular Mycorrhizal Fungi under CO2 Enrichment. Oecologia, 117, 496-503. https://doi.org/10.1007/s004420050685
 | 
                     
                                
                                    
                                        | [29] | Wang, C., Zong, S. and Li, M.H. (2019) The Contrasting Responses of Mycorrhizal Fungal Mycelium Associated with Woody Plants to Multiple Environmental Factors. Forests, 10, 973-973. https://doi.org/10.3390/f10110973
 | 
                     
                                
                                    
                                        | [30] | Frew, A. and Price, J.N. (2019) Mycorrhizal-Mediated Plant-Herbivore Interactions in a High CO2 World. Functional Ecology, 33, 1376-1385. https://doi.org/10.1111/1365-2435.13347
 | 
                     
                                
                                    
                                        | [31] | Clark, N.M., Rillig, M.C. and Nowak, R.S. (2009) Arbuscular Mycorrhizal Fungal Abundance in the Mojave Desert: Seasonal Dynamics and Impacts of Elevated CO2. Journal of Arid Environments, 73, 834-843. https://doi.org/10.1016/j.jaridenv.2009.03.004
 | 
                     
                                
                                    
                                        | [32] | Zheng, J., Cui, M., Wang, C., et al. (2022) Elevated CO2, Warming, N Addition, and Increased Precipitation Affect Different Aspects of the Arbuscular Mycorrhizal Fungal Community. Science of the Total Environment, 806, Article ID: 150522. https://doi.org/10.1016/j.scitotenv.2021.150522
 | 
                     
                                
                                    
                                        | [33] | Thirkell, T.J., Pastok, D. and Field, K.J. (2020) Carbon for Nutrient Exchange between Arbuscular Mycorrhizal Fungi and Wheat Varies According to Cultivar and Changes in Atmospheric Carbon Dioxide Concentration. Global Change Biology, 26, 1725-1738. https://doi.org/10.1111/gcb.14851
 | 
                     
                                
                                    
                                        | [34] | Garcia, M.O., Ovasapyan, T., Greas, M., et al. (2008) Mycorrhizal Dynamics under Elevated CO2 and Nitrogen Fertilization in a Warm Temperate Forest. Plant & Soil, 303, 301-310. https://doi.org/10.1007/s11104-007-9509-9
 | 
                     
                                
                                    
                                        | [35] | Reid, J.P., Adair, E.C., Hobbie, S.E., et al. (2012) Biodiversity, Nitrogen Deposition, and CO2 Affect Grassland Soil Carbon Cycling but Not Storage. Ecosystems, 15, 580-590. https://doi.org/10.1007/s10021-012-9532-4
 | 
                     
                                
                                    
                                        | [36] | Klironomos, J.N., Ursic, M. and Rillig, M. (1998) Interspecific Differences in the Response of Arbuscular Mycorrhizal Fungi to Artemisia tridentata Grown under Elevated Atmospheric CO2. New Phytologist, 138, 599-605. https://doi.org/10.1046/j.1469-8137.1998.00141.x
 | 
                     
                                
                                    
                                        | [37] | Wolf, J., Johnson, N.C., Rowland, D.L., et al. (2001) Elevated CO2 and Plant Species Richness Impact Arbuscular Mycorrhizal Fungal Spore Communities. New Phytologist, 157, 579-588. https://doi.org/10.1046/j.1469-8137.2003.00696.x
 | 
                     
                                
                                    
                                        | [38] | Antoninka, A., Reich, P.B. and Johnson, N.C. (2011) Seven Years of Carbon Dioxide Enrichment, Nitrogen Fertilization and Plant Diversity Influence Arbuscular Mycorrhizal Fungi in a Grassland Ecosystem. New Phytologist, 192, 200-214. https://doi.org/10.1111/j.1469-8137.2011.03776.x
 | 
                     
                                
                                    
                                        | [39] | Sy’korová, Z., Ineichen, K., Wiemken, A., et al. (2007) The Cultivation Bias: Different Communities of Arbuscular Mycorrhizal Fungi Detected in Roots from the Field, from Bait Plants Transplanted to the Field, and from a Greenhouse Trap Experiment. Mycorrhiza, 18, 1-14. https://doi.org/10.1007/s00572-007-0147-0
 | 
                     
                                
                                    
                                        | [40] | Du, C., Wang, X., Zhang, M., et al. (2019) Effects of Elevated CO2 on Plant C-N-P Stoichiometry in Terrestrial Ecosystems: A Meta-Analysis. Science of the Total Environment, 650, 697-708. https://doi.org/10.1016/j.scitotenv.2018.09.051
 | 
                     
                                
                                    
                                        | [41] | Treseder, K.K. (2004) A Meta-Analysis of Mycorrhizal Responses to Nitrogen, Phosphorus, and Atmospheric CO2 in Field Studies. New Phytologist, 164, 347-355. https://doi.org/10.1111/j.1469-8137.2004.01159.x
 | 
                     
                                
                                    
                                        | [42] | Butterly, C.R., Armstrong, R., Chen, D., et al. (2015) Carbon and Nitrogen Partitioning of Wheat and Field Pea Grown with Two Nitrogen Levels under Elevated CO2. Plant and Soil, 391, 367-382. https://doi.org/10.1007/s11104-015-2441-5
 | 
                     
                                
                                    
                                        | [43] | Loladze, I. (2014) Hidden Shift of the Ionome of Plants Exposed to Elevated CO2 Depletes Minerals at the Base of Human Nutrition. eLife, 3, e02245. https://doi.org/10.7554/eLife.02245
 | 
                     
                                
                                    
                                        | [44] | Olesniewicz, K.S. and Thomas, R.B. (1999) Effects of Mycorrhizal Colonization on Biomass Production and Nitrogen Fixation of Black Locust (Robinia pseudoacacia) Seedlings Grown under Elevated Atmospheric Carbon Dioxide. New Phytologist, 142, 133-140. https://doi.org/10.1046/j.1469-8137.1999.00372.x
 | 
                     
                                
                                    
                                        | [45] | Baslam, M., Garmendia, I. and Goicoechea, N. (2012) Elevated CO2 May Impair the Beneficial Effect of Arbuscular Mycorrhizal Fungi on the Mineral and Phytochemical Quality of Lettuce. Annals of Applied Biology, 161, 180-191. https://doi.org/10.1111/j.1744-7348.2012.00563.x
 | 
                     
                                
                                    
                                        | [46] | Gavito, M.E., Schweiger, P. and Jakobsen, I. (2002) P Uptake by Arbuscular Mycorrhizal Hyphae: Effect of Soil Temperature and Atmospheric CO2 Enrichment. Global Change Biology, 9, 106-116. https://doi.org/10.1046/j.1365-2486.2003.00560.x
 | 
                     
                                
                                    
                                        | [47] | Chen, X., Tu, C., Burton, M.G., et al. (2007) Plant Nitrogen Acquisition and Interactions under Elevated Carbon Dioxide: Impact of Endophytes and Mycorrhizae. Global Change Biology, 13, 1238-1249. https://doi.org/10.1111/j.1365-2486.2007.01347.x
 | 
                     
                                
                                    
                                        | [48] | 孙颖盈, 王欣雨, 祝晨琳. 大气二氧化碳浓度升高下丛枝菌根真菌对植物生长发育影响的研究与展望[J]. 植物学研究, 2022, 11(3): 299-305. | 
                     
                                
                                    
                                        | [49] | Chen, F.J., Wu, G., Ge, F., et al. (2005) Effects of Elevated CO2 and Transgenic Bt Cotton on Plant Chemistry, Performance, and Feeding of an Insect Herbivore, the Cotton Bollworm. Entomologia Experimentalis et Applicata, 115, 341-350. https://doi.org/10.1111/j.1570-7458.2005.00258.x
 | 
                     
                                
                                    
                                        | [50] | Wu, G., Chen, F.J., Ge, F., et al. (2011) Impacts of Elevated CO2 on Expression of Plant Defensive Compounds in Bt-Transgenic Cotton in Response to Infestation by Cotton Bollworm. Agricultural and Forest Entomology, 13, 77-82. https://doi.org/10.1111/j.1461-9563.2010.00508.x
 | 
                     
                                
                                    
                                        | [51] | Liu, Y.M., Dang, Z.H., Parajulee, M.N., et al. (2019) Interactive Effects of [CO2] and Temperature on Plant Chemistry of Transgenic Bt Rice and Population Dynamics of a Non-Target Planthopper, Nilaparvata lugens (Stål) under Different Levels of Soil Nitrogen. Toxins, 11, Article 261. https://doi.org/10.3390/toxins11050261
 | 
                     
                                
                                    
                                        | [52] | Sun, Y.C., Guo, H.J., Zhu-Salzman, K., et al. (2013) Elevated CO2 Increases the Abundance of the Peach Aphid on Arabidopsis by Reducing Jasmonic Acid Defenses. Plant Science, 210, 128-140. https://doi.org/10.1016/j.plantsci.2013.05.014
 | 
                     
                                
                                    
                                        | [53] | Guo, H.J., Sun, Y.C., Li, Y.F., et al. (2014) Elevated CO2 Alters the Feeding Behaviour of the Pea Aphid by Modifying the Physical and Chemical Resistance of Medicago truncatula. Plant, Cell & Environment, 37, 2158-2168. https://doi.org/10.1111/pce.12306
 | 
                     
                                
                                    
                                        | [54] | Wang, L., Wang, X., Gao, F., et al. (2021) AMF Inoculation Can Enhance Yield of Transgenic Bt Maize and Its Control Efficiency against Mythimna separata Especially under Elevated CO2. Frontiers in Plant Science, 12, Article 655060. https://doi.org/10.3389/fpls.2021.655060
 | 
                     
                                
                                    
                                        | [55] | Charters, M.D., Sait, S.M. and Field, K.J. (2020) Aphid Herbivory Drives Asymmetry in Carbon for Nutrient Exchange between Plants and an Arbuscular Mycorrhizal Fungus. Current Biology, 30, 1801-1808.E5. https://doi.org/10.1016/j.cub.2020.02.087
 | 
                     
                                
                                    
                                        | [56] | Kretzschmar, F.D.S., Aidar, M.P.M., Salgado, I., et al. (2009) Elevated CO2 Atmosphere Enhances Production of Defense-Related Flavonoids in Soybean Elicited by No and a Fungal Elicitor. Environmental and Experimental Botany, 65, 319-329. https://doi.org/10.1016/j.envexpbot.2008.10.001
 | 
                     
                                
                                    
                                        | [57] | Luo, Y. (2003) Response of Soil Microorganism to Elevated Atmospheric CO2 Concentration. Journal of Ecology and Environment, 12, 357-360. | 
                     
                                
                                    
                                        | [58] | Hasanuzzaman, M., Nahar, K., Alam, M.M., et al. (2013) Physiological, Biochemical and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 14, 9643-9684. https://doi.org/10.3390/ijms14059643
 | 
                     
                                
                                    
                                        | [59] | Jagadish, S.V.K., Way, D.A. and Sharkey, T.D. (2021) Plant Heat Stress: Concepts Directing Future Research. Plant, Cell & Environment, 44, 1992-2005. https://doi.org/10.1111/pce.14050
 | 
                     
                                
                                    
                                        | [60] | Barzana, G., Aroca, R., Bienert, G.P., et al. (2014) New Insights into the Regulation of Aquaporins by the Arbuscular Mycorrhizal Symbiosis in Maize Plants under Drought Stress and Possible Implications for Plant Performance. Plant—Microbe Interaction, 27, 349-363. https://doi.org/10.1094/MPMI-09-13-0268-R
 | 
                     
                                
                                    
                                        | [61] | Ruíz-Sánchez, M., Aroca, R., Munoz, et al. (2010) The Arbuscular Mycorrhizal Symbiosis Enhances the Photosynthetic Efficiency and the Antioxidative Response of Rice Plants Subjected to Drought Stress. Plant Physiology, 167, 862-869. https://doi.org/10.1016/j.jplph.2010.01.018
 | 
                     
                                
                                    
                                        | [62] | Zhu, X.C., Song, F.B. and Xu, H.W. (2010) Arbuscular Mycorrhizae Improves Low Temperature Stress in Maize via Alterations in Host Water Status and Photosynthesis. Plant and Soil, 331, 129-137. https://doi.org/10.1007/s11104-009-0239-z
 | 
                     
                                
                                    
                                        | [63] | Zhu, X.C., Song, F.B., Liu, S.Q., et al. (2012) Arbuscular Mycorrhizae Improves Photosynthesis and Water Status of Zea mays L. under Drought Stress. Plant, Soil and Environment, 58, 186-191. https://doi.org/10.17221/23/2011-PSE
 | 
                     
                                
                                    
                                        | [64] | Habibzadeh, Y., Pirzad, A., Zardashti, M.R., et al. (2013) Effects of Arbuscular Mycorrhizal Fungi on Seed and Protein Yield under Water Deficit Stress in Mung Bean. Agronomy Journal, 105, 79-84. https://doi.org/10.2134/agronj2012.0069
 | 
                     
                                
                                    
                                        | [65] | Porcel, R. and Ruiz-Lozano, J.M. (2004) Arbuscular Mycorrhizal Influence on Leaf Water Potential, Solute Accumulation, and Oxidative Stress in Soybean Plants Subjected to Drought Stress. Journal of Experimental Botany, 55, 1743-1750. https://doi.org/10.1093/jxb/erh188
 | 
                     
                                
                                    
                                        | [66] | Zhu, X.C., Song, F.B. and Xu, H.W. (2009) Influence of Arbuscular Mycorrhiza on Lipid Peroxidation and Antioxidant Enzyme Activity of Maize Plants under Temperature Stress. Mycorrhiza, 20, 325-332. https://doi.org/10.1007/s00572-009-0285-7
 | 
                     
                                
                                    
                                        | [67] | Wu, Q.S., Zou, Y.N., Liu, W., et al. (2010) Alleviation of Salt Stress in Citrus Seedlings Inoculated with Mycorrhiza: Changes in Leaf Antioxidant Defense Systems. Plant, Soil and Environment, 56, 470-475. https://doi.org/10.17221/54/2010-PSE
 | 
                     
                                
                                    
                                        | [68] | Lu, X. and Koide, R.T. (1994) The Effects of Mycorrhizal Infection on Components of Plant Growth and Reproduction. New Phytologist, 128, 211-218. https://doi.org/10.1111/j.1469-8137.1994.tb04004.x
 | 
                     
                                
                                    
                                        | [69] | Mathur, S., Agnihotri, R., Sharma, M.P., et al. (2021) Effect of High-Temperature Stress on Plant Physiological Traits and Mycorrhizal Symbiosis in Maize Plants. Fungi (Basel), 7, 867. https://doi.org/10.3390/jof7100867
 | 
                     
                                
                                    
                                        | [70] | Jumrani, K., Bhatia, V.S., Kataria, S., et al. (2022) Inoculation with Arbuscular Mycorrhizal Fungi Alleviates the Adverse Effects of High Temperature in Soybean. Plants (Basel), 11, Article 2210. https://doi.org/10.3390/plants11172210
 | 
                     
                                
                                    
                                        | [71] | 王谭国艳, 马志远, 李沛洋, 等. 短期增温对青藏高原高寒草甸不同植物根际丛枝菌根真菌的影响[J]. 草地学报, 2021, 29(9): 1959-1966. | 
                     
                                
                                    
                                        | [72] | Rillig, M.C., Leifheit, E. and Lehmann, J. (2021) Microplastic Effects on Carbon Cycling Processes in Soils. PLOS Biology, 19, e3001130. https://doi.org/10.1371/journal.pbio.3001130
 | 
                     
                                
                                    
                                        | [73] | Yang, W., Yong, Z., Chen, G., et al. (2013) The Arbuscular Mycorrhizal Fungal Community Response to Warming and Grazing Differs between Soil and Roots on the Qinghai-Tibetan Plateau. PLOS ONE, 8, e76447. https://doi.org/10.1371/journal.pone.0076447
 | 
                     
                                
                                    
                                        | [74] | Shi, G., Yao, B., Liu, Y., et al. (2017) The Phylogenetic Structure of AMF Communities Shifts in Response to Gradient Warming with and without Winter Grazing on the Qinghai-Tibet Plateau. Applied Soil Ecology, 121, 31-40. https://doi.org/10.1016/j.apsoil.2017.09.010
 | 
                     
                                
                                    
                                        | [75] | 石国玺, 王芳萍, 马丽, 等. 长期、短期增温对高寒草甸AM真菌群落结构的影响[J]. 草地学报, 2021, 29(z1): 179-189. | 
                     
                                
                                    
                                        | [76] | Qiu, Y., Guo, L., Xu, X., et al. (2021) Warming and Elevated Ozone Induce Tradeoffs between Fine Roots and Mycorrhizal Fungi and Stimulate Organic Carbon Decomposition. Science Advances, 7, eabe9256. https://doi.org/10.1126/sciadv.abe9256
 | 
                     
                                
                                    
                                        | [77] | Eroglu, A., Russo, M.J., Bieganski, R., et al. (2000) Intracellular Trehalose Improves the Survival of Cryopreserved Mammalian Cells. Nature Biotechnology, 18, 163-167. https://doi.org/10.1038/72608
 | 
                     
                                
                                    
                                        | [78] | Ocón, A., Hampp, R. and Requena, N. (2007) Trehalose Turnover during Abiotic Stress in Arbuscular Mycorrhizal Fungi. New Phytologist, 174, 879-891. https://doi.org/10.1111/j.1469-8137.2007.02048.x
 | 
                     
                                
                                    
                                        | [79] | Lennon, J.T. and Jones, S.E. (2011) Microbial Seed Banks: The Ecological and Evolutionary Implications of Dormancy. Nature Reviews Microbiology, 9, 119-130. https://doi.org/10.1038/nrmicro2504
 | 
                     
                                
                                    
                                        | [80] | Rui, J.L., Wang, S., An, J., et al. (2015) Responses of Bacterial Communities to Simulated Climate Changes in Alpine Meadow Soil of the Qinghai-Tibet Plateau. Applied and Environmental Microbiology, 81, 6070-6077. https://doi.org/10.1128/AEM.00557-15
 | 
                     
                                
                                    
                                        | [81] | 金海如, 丁国丽, 蒋湘艳, 孙颖盈. 一种生物组织硝态氮素中15N丰度的测定方法[P]. 中国专利, CN202210631176.1. 2022-09-06. |