带变量核分数次极大算子在λ-中心Morrey 空间上的加权估计
Weighted Estimates of Fractional Maximal Operator with Variable Kernel on λ-Central Morrey Spaces
DOI: 10.12677/PM.2023.133068, PDF, HTML,    科研立项经费支持
作者: 杨雨荷, 辛 珍, 李巧霞, 徐苏苏:伊犁师范大学数学与统计学院,新疆 伊宁;伊犁师范大学应用数学研究所,新疆 伊宁
关键词: 加权λ-中心 Morrey 空间分数次极大算子变量核Weighted λ-Central Morrey Space Fractional Maximal Operator Variable Kernel
摘要: 利用权不等式及实变方法,并借助于Lp空间上的加权有界性,得到了变量核分数次极大算子在加权 λ-中心 Morrey 空间上的有界性。
Abstract: By applying the weighted inequalities and the real variable methods, the boundedness of the fractional maximal operator with variable kernel is obtained in the weighted λ-central Morrey spaces with the help of the corresponding boundedness on the Lp spaces.
文章引用:杨雨荷, 辛珍, 李巧霞, 徐苏苏. 带变量核分数次极大算子在λ-中心Morrey 空间上的加权估计[J]. 理论数学, 2023, 13(3): 636-643. https://doi.org/10.12677/PM.2023.133068

参考文献

[1] Morrey, C. (1938) On Solutions of Quasi-Linear Elliptic Partial Differential Equations. Transactions of the American Mathematical Society, 43, 126-166.
https://doi.org/10.1090/S0002-9947-1938-1501936-8
[2] Alvarez, J., Guzman-Partida, M. and Lakey, J. (2000) Spaces of Bounded λ-Central Mean Oscillation, Morrey Spaces, and λ-Central Carleson Measures. Collectanea Mathematica, 51, 1-47.
[3] 陶双平,陈转转. Marcinkiewicz积分及其交换子在加权λ-中心Morrey空间上的加权有界性[J].西北师范大学学报(自然科学版),2019,55(4): 1-8.
[4] 徐琪,喻晓,马江山.具有粗核的双线性Hardy算子交换子在λ-中心Morrey空间中的有界性[J].上饶师范学院学报,2021,41(6): 12-17.
[5] Vakhtang, K. and Alexander, M. (2007) Weighted Criteria for Generalized Fractional Maximal Functions and Potentials in Lebesgue Spaces with Variable Exponet. Integral Transforms and Special Functions, 18, 609-628.
https://doi.org/10.1080/10652460701445344
[6] Tao, X.X. and Shi, Y.L. (2011) Multilinear Commutators of Calderon-Zygmund Operator on λ-Central Morrey Spaces. Advances in Mathematics, 40, 47-59.
[7] Yu, X. and Tao, X.X. (2013) Boundedness for a Class of Generalized Commutators on λ-Central Morrey Spaces. Acta Mathematica Sinica English Series, 29, 1917-1926.
https://doi.org/10.1007/s10114-013-2174-4
[8] 陶双平,高荣.多线性分数次积分和极大算子在Morrey空间上的加权估计[J].山东大学学报(理学版),2018,53(6): 30-37.
[9] 张璞,武江龙.分数次极大函数的交换子[J].数学学报,2009,52(6): 1235-1238.
[10] 徐永华,束立生.带变量核的分数次积分算子在Harey空间上的有界性[J].纯粹数学与应用数学,2011,27(2): 199-203.
[11] 赵凯,李加锋,朱素婷.变量核的Marcinkiewicz积分的加权有界性(英文)[J].应用数学,2013,26(1): 172-176.
[12] Ding, Y., Chen, J.C. and Fan, D.S. (2002) A Class of Integral Operators with Variable Kernels on Hardy Spaces. Chinese Annals of Mathematics Series A, 23, 289-296.
[13] Ding, Y., Lin, C.C. and Shao, S.L. (2004) On the Marcinkiewicz Integral with Variable Kernels. Indiana University Mathematics Journal, 53, 805-821.
https://doi.org/10.1512/iumj.2004.53.2406
[14] Chen, Y.P. and Ding, Y. (2013) The Boundedness for Commutator of Fractional Integral Operator with Rough Variable Kernel. Potential Analysis, 38, 119-142.
https://doi.org/10.1007/s11118-011-9267-4
[15] Shao, X.K. and Wang, S.P. (2015) Boundedness of Fractional Operators with Variable Kernels on Weighted Morrey Spaces. Journal of Anhui University (Natural Sciences), 39, 21-24.
[16] 辛银萍,陶双平.带变量核的Marcinkiewicz积分算子在变指标Herz型Hardy空间上的有界性[J].山东大学学报(理学版),2018,53(6): 38-43.
[17] 赵凯,董鹏娟,邵帅. 分数次积分算子交换子在λ-中心Morrey空间上的加权有界性[J].山东大学学报(理学版),2011,46(12): 88-92.
[18] Yu, X., Zhang, H.H. and Zhao, G.P. (2016) Weighted Boundedness of Some Integral Operators on Weighted λ-Central Morrey Spaces. Applied Mathematics|A Journal of Chinese Universities, 31, 331-342.
https://doi.org/10.1007/s11766-016-3348-5
[19] Grafakos, L. (2008) Classical and Modern Fourier Analysis. Prentice Hall, New York, 279-291.