[1]
|
N. Kondrath, M. K. Kazimierczuk. Characteristics and applications of silicon carbide power devices in power electronics. In- ternational Journal of Electronics and Telecommunications, 2010, 56(3): 231-236.
|
[2]
|
E. Borchi, R. Macii, M. Bruzzi, et al. Characterisation of SiC photo-detectors for solar UV radiation monitoring. Nuclear Instruments and Methods in Physics Research A, 2011, 658(1): 121-124.
|
[3]
|
E. Pace, A. D. Sio. Innovative diamond photo-detectors for UV astrophysics. Memorie Dellac SAIt Supplementi, 2010, 14(84): 84-89.
|
[4]
|
X. Sun, D. Li, H. Jiang, et al. Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface. Applied Physics Letters, 2011, 98: Article ID 121117.
|
[5]
|
G. Kwak, M. Seol, Y. Tak, et al. Superhydrophobic ZnO nanowire surface: Chemical modification and effects of UV irradiation. Journal of Physical Chemistry C, 2009, 113(28): 12085-12089.
|
[6]
|
S. S. Hullavarad, N. V. Hullavarad, P. C. Karulkar, et al. Ultra violet sensors based on nanostructured ZnO spheres in network of nanowires: A novel approach. Nanoscale Research Letters, 2007, 2(3): 161-167.
|
[7]
|
C. Bin, Y. Yin-Tang, C. Chang-Chun, et al. Quantitatively exploring the effect of a triangular electrode on performance enhancement in a 4H-SiC metal-semiconductor-metal ultraviolet photodetector. Chinese Physics Letter, 2011, 28(6): Article ID 068501.
|
[8]
|
Y. Xie, H. Huang, W. Yang, et al. Low dark current metal- semiconductor-metal ultraviolet photodetectors based on sol-gel- derived TiO2 films. Journal of Applied Physics, 2011, 109(2): Article ID 023114.
|
[9]
|
H. Xue, X. Kong, Z. Liu, et al. TiO2 based metal- semiconduc- tor-metal ultraviolet photodetectors. Applied Physics Letters, 2007, 90(20): Article ID 201118.
|
[10]
|
I. Ciancaglioni, M. Marinelli, E. Milani, et al. Secondary elec- tron emission in extreme-UV detectors: Application to diamond based devices. Journal of Applied Physics, 2011, 110(1): Article ID 014501.
|
[11]
|
J. Chen, Q. Shi and W. Tang. Field emission performance of SiC nanowires directly grown on graphite substrate. Materials Chem- istry and Physics, 2011, 126(3): 655-659.
|
[12]
|
X. Wang, B. Tang, F. Gao, et al. Large-scale synthesis of hydro- phobic SiC/C nanocables with enhanced electrical properties. Journal of Physics D: Applied Physics, 2011, 44(24): Article ID 245404.
|
[13]
|
G. Y. Li, X. D. Li, Z. D. Chen, et al. Large areas of centimeters-long SiC nanowires synthesized by pyrolysis of a polymer precursor by a CVD route. Journal of Physical Chemistry C, 2009, 113(41): 17655-17660.
|
[14]
|
O. Katz, V. Garber, B. Meyler, et al. Gain mechanism in GaN Schottky ultraviolet detectors. Applied Physics Letters, 2001, 79(10): 1417-1419.
|
[15]
|
N. Vanhove, J. John, A. Lorenz, et al. ITON Schottky contacts for GaN based UV photodetectors. Applied Surface Science, 2006, 253(5): 2930-2932.
|
[16]
|
Y. Liu, C. R. Gorla and S. Liang. Ultraviolet detectors based on epitaxial ZnO films grown by MOVCD. Journal of Electronic Materials, 2000, 29(1): 69-74.
|
[17]
|
S. V. Averine, Y. C. Chan and Y. L. Lam. Geometry optimization of interdigitated Schottky-barrier metal-semiconductor-metal photo- diode structures. Solid-State Electronics, 2001, 45: 441- 446.
|
[18]
|
E. Monroy, T. Palacios, O. Hainaut, et al. Assessment of GaN metal-semiconductor-metal photodiodes for high-energy ultraviolet photodetection. Applied Physics Letters, 2002, 80(17): 3198-3200.
|