| [1] | Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
 | 
                     
                                
                                    
                                        | [2] | 王静, 丁鹏鹏, 王亚丹, 崔建芳, 王沧海, 刘红. T1M1期胃癌患者临床病理特征及预后生存分析[J]. 胃肠病学和肝病学杂志, 2021, 30(10): 1107-1111. | 
                     
                                
                                    
                                        | [3] | Bejarano, L., Jordāo, M.J.C. and Joyce, J.A. (2021) Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 11, 933-959. https://doi.org/10.1158/2159-8290.CD-20-1808
 | 
                     
                                
                                    
                                        | [4] | Mantovani, A., Marchesi, F., Jaillon, S., et al. (2021) Tu-mor-Associated Myeloid Cells: Diversity and Therapeutic Targeting. Cellular & Molecular Immunology, 18, 566. https://doi.org/10.1038/s41423-020-00613-4
 | 
                     
                                
                                    
                                        | [5] | Yang, S., Liu, Q. and Liao, Q. (2020) Tumor-Associated Mac-rophages in Pancreatic Ductal Adenocarcinoma: Origin, Polarization, Function, and Reprogramming. Frontiers in Cell and Developmental Biology, 8, Article ID: 607209. https://doi.org/10.3389/fcell.2020.607209
 | 
                     
                                
                                    
                                        | [6] | Ruytinx, P., Proost, P., Van Damme, J., et al. (2018) Chemo-kine-Induced Macrophage Polarization in Inflammatory Conditions. Frontiers in Immunology, 9, 1930. https://doi.org/10.3389/fimmu.2018.01930
 | 
                     
                                
                                    
                                        | [7] | Zeng, D., Li, M., Zhou, R., et al. (2019) Tumor Microenvironment Characterization in Gastric Cancer Identifies Prognostic and Immunotherapeutically Relevant Gene Signatures. Cancer Immunology Research, 7, 737-750. https://doi.org/10.1158/2326-6066.CIR-18-0436
 | 
                     
                                
                                    
                                        | [8] | Hardbower, D.M., Asim, M., Murray-Stewart, T., et al. (2016) Arginase 2 Deletion Leads to Enhanced M1 Macrophage Activation and Upregulated Polyamine Metabolism in Response to Helicobacter pylori Infection. Amino Acids, 48, 2375-2388. https://doi.org/10.1007/s00726-016-2231-2
 | 
                     
                                
                                    
                                        | [9] | Wang, Z., Yang, Y., Cui, Y., et al. (2020) Tumor-Associated Macrophages Regulate Gastric Cancer Cell Invasion and Metastasis through TGFβ2/NF-κB /Kindlin-2 Axis. Chinese Journal of Cancer Research, 32, 72-88. https://doi.org/10.21147/j.issn.1000-9604.2020.01.09
 | 
                     
                                
                                    
                                        | [10] | Ostuni, R., Kratochvill, F., Murray, P.J., et al. (2015) Macrophages and Cancer: From Mechanisms to Therapeutic Implications. Trends in Immunology, 36, 229-239. https://doi.org/10.1016/j.it.2015.02.004
 | 
                     
                                
                                    
                                        | [11] | Achkovad, M. (2016) Role of the Colony-Stimulating Factor (CSF)/CSF-1 Receptor Axis in Cancer. Biochemical Society Transactions, 44, 333-341. https://doi.org/10.1042/BST20150245
 | 
                     
                                
                                    
                                        | [12] | Ma, F., Zhang, B., Ji, S., et al. (2019) Hypoxic Macrophage-Derived VEGF Promotes Proliferation and Invasion of Gastric Cancer Cells. Digestive Diseases and Sciences, 64, 3154-3163. https://doi.org/10.1007/s10620-019-05656-w
 | 
                     
                                
                                    
                                        | [13] | Liu, D., Wang, N., Sun, Y., et al. (2018) Expression of VEGF with Tumor Incidence, Metastasis and Prongnosis in Human Gastric Carcinoma. Cancer Biomarkers, 22, 693-700. https://doi.org/10.3233/CBM-171163
 | 
                     
                                
                                    
                                        | [14] | Zhu, J., Zhi, Q., Zhou, B.P., et al. (2016) The Role of Tumor Associat-ed Macrophages in the Tumor Microenvironment: Mechanism and Functions. Anti-Cancer Agents in Medicinal Chemis-try, 16, 1133-1141. https://doi.org/10.2174/1871520616666160520112622
 | 
                     
                                
                                    
                                        | [15] | Ma, Y.Y., He, X.J., Wang, H.J., et al. (2011) Interac-tion of Coagulation Factors and Tumor-Associated Macrophages Mediates Migration and Invasion of Gastric Cancer. Cancer Science, 102, 336-342. https://doi.org/10.1111/j.1349-7006.2010.01795.x
 | 
                     
                                
                                    
                                        | [16] | Shen, Z.L., Yan, Y.C., Ye, C., et al. (2016) The Effect of Vasohibin-1 Expression and Tumor-Associated Macrophages on the Angiogenesis in Vitro and in Vivo. Tumor Biology, 37, 7267-7276. https://doi.org/10.1007/s13277-015-4595-4
 | 
                     
                                
                                    
                                        | [17] | 邱森, 孙淼淼, 陈奎生. 肿瘤相关巨噬细胞对肿瘤血管生成影响的研究进展[J]. 细胞与分子免疫学杂志, 2019, 35(5): 469-472. | 
                     
                                
                                    
                                        | [18] | Liu, J.Y., Yang, X.J., Geng, X.F., et al. (2016) Prognostic Significance of Tumor-Associated Macrophages Density in Gastric Cancer: A Systemic Review and Meta-Analysis. Minerva Medica, 107, 314-321. | 
                     
                                
                                    
                                        | [19] | Tauchi, Y., Tanaka, H., Kumamoto, K., et al. (2016) Tu-mor-Associated Macrophages Induce Capillary Morphogenesis of Lymphatic Endothelial Cells Derived from Human Gastric Cancer. Cancer Science, 107, 1101-1109. https://doi.org/10.1111/cas.12977
 | 
                     
                                
                                    
                                        | [20] | Chen, H., Guan, R., Lei, Y., et al. (2015) Lymphangiogenesis in Gastric Cancer Regulated through Akt/mTOR-VEGF- C/VEGF-D Axis. BMC Cancer, 15, 103. https://doi.org/10.1186/s12885-015-1109-0
 | 
                     
                                
                                    
                                        | [21] | Pathria, P., Louis, T.L. and Varner, J.A. (2019) Targeting Tu-mor-Associated Macrophages in Cancer. Trends in Immunology, 40, 310-327. https://doi.org/10.1016/j.it.2019.02.003
 | 
                     
                                
                                    
                                        | [22] | Liu, Y., Ye, Y. and Zhu, X. (2019) MMP-9 Secreted by Tumor As-sociated Macrophages Promoted Gastric Cancer Metastasis through a PI3K/AKT/Snail Pathway. Biomedicine & Phar-macotherapy, 117, Article ID: 109096. https://doi.org/10.1016/j.biopha.2019.109096
 | 
                     
                                
                                    
                                        | [23] | Eissmann, M.F., Dijkstra, C., Jarnicki, A., et al. (2019) IL-33-Mediated Mast Cell Activation Promotes Gastric Cancer through Macrophage Mobilization. Nature Communica-tions, 10, 2735. https://doi.org/10.1038/s41467-019-10676-1
 | 
                     
                                
                                    
                                        | [24] | Liu, X., Xu, D., Huang, C., et al. (2019) Regu-latory T Cells and M2 Macrophages Present Diverse Prognostic Value in Gastric Cancer Patients with Different Clinico-pathologic Characteristics and Chemotherapy Strategies. Journal of Translational Medicine, 17, 192. https://doi.org/10.1186/s12967-019-1929-9
 | 
                     
                                
                                    
                                        | [25] | Huang, Y.K., Wang, M., Sun, Y., et al. (2019) Macrophage Spa-tial Heterogeneity in Gastric Cancer Defined by Multiplex Immunohistochemistry. Nature Communications, 10, 3928. https://doi.org/10.1038/s41467-019-11788-4
 | 
                     
                                
                                    
                                        | [26] | Binenbaum, Y., Fridman, E., Yaari, Z., et al. (2018) Transfer of miRNA in Macrophage-Derived Exosomes Induces Drug Resistance in Pancreatic Adenocarcinoma. Cancer Research, 78, 5287-5299. https://doi.org/10.1158/0008-5472.CAN-18-0124
 | 
                     
                                
                                    
                                        | [27] | Zhuang, H., Dai, X., Zhang, X., et al. (2020) Sophoridine Suppresses Macrophage-Mediated Immunosuppression through TLR4/IRF3 Pathway and Subsequently Upregulates CD8+ T Cytotoxic Function against Gastric Cancer. Biomedicine & Pharmacotherapy, 121, Article ID: 109636. https://doi.org/10.1016/j.biopha.2019.109636
 | 
                     
                                
                                    
                                        | [28] | Wang, X., Jiao, X., Meng, Y., et al. (2018) Methionine Enkephalin (MENK) Inhibits Human Gastric Cancer through Regulating Tumor Associated Macrophages (TAMs) and PI3K/AKT/mTOR Signaling Pathway inside Cancer Cells. International Immunopharmacology, 65, 312-322. https://doi.org/10.1016/j.intimp.2018.10.023
 | 
                     
                                
                                    
                                        | [29] | Yamaguchi, T., Fushida, S., Yamamoto, Y., et al. (2017) Low-Dose Paclitaxel Suppresses the Induction of M2 Macrophages in Gastric Cancer. Oncology Reports, 37, 3341-3350. https://doi.org/10.3892/or.2017.5586
 | 
                     
                                
                                    
                                        | [30] | Cassier, P.A., Italiano, A., Gomez-Roca, C.A., et al. (2015) CSF1R In-hibition with Emactuzumab in Locally Advanced Diffuse-Type Tenosynovial Giant Cell Tumours of the Soft Tissue: A Dose-Escalation and Dose-Expansion Phase 1 Study. The Lancet Oncology, 16, 949-956. https://doi.org/10.1016/S1470-2045(15)00132-1
 | 
                     
                                
                                    
                                        | [31] | Aldinucci, D. and Casagrande, N. (2018) Inhibition of the CCL5/CCR5 Axis against the Progression of Gastric Cancer. International Journal of Molecular Sciences, 19, 1477. https://doi.org/10.3390/ijms19051477
 | 
                     
                                
                                    
                                        | [32] | Zang, X., Zhang, X., Hu, H., et al. (2019) Targeted Delivery of Zoledronate to Tumor-Associated Macrophages for Cancer Immunotherapy. Molecular Pharmaceutics, 16, 2249-2258. https://doi.org/10.1021/acs.molpharmaceut.9b00261
 |