|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
王静, 丁鹏鹏, 王亚丹, 崔建芳, 王沧海, 刘红. T1M1期胃癌患者临床病理特征及预后生存分析[J]. 胃肠病学和肝病学杂志, 2021, 30(10): 1107-1111.
|
|
[3]
|
Bejarano, L., Jordāo, M.J.C. and Joyce, J.A. (2021) Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 11, 933-959. [Google Scholar] [CrossRef]
|
|
[4]
|
Mantovani, A., Marchesi, F., Jaillon, S., et al. (2021) Tu-mor-Associated Myeloid Cells: Diversity and Therapeutic Targeting. Cellular & Molecular Immunology, 18, 566. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yang, S., Liu, Q. and Liao, Q. (2020) Tumor-Associated Mac-rophages in Pancreatic Ductal Adenocarcinoma: Origin, Polarization, Function, and Reprogramming. Frontiers in Cell and Developmental Biology, 8, Article ID: 607209. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ruytinx, P., Proost, P., Van Damme, J., et al. (2018) Chemo-kine-Induced Macrophage Polarization in Inflammatory Conditions. Frontiers in Immunology, 9, 1930. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zeng, D., Li, M., Zhou, R., et al. (2019) Tumor Microenvironment Characterization in Gastric Cancer Identifies Prognostic and Immunotherapeutically Relevant Gene Signatures. Cancer Immunology Research, 7, 737-750. [Google Scholar] [CrossRef]
|
|
[8]
|
Hardbower, D.M., Asim, M., Murray-Stewart, T., et al. (2016) Arginase 2 Deletion Leads to Enhanced M1 Macrophage Activation and Upregulated Polyamine Metabolism in Response to Helicobacter pylori Infection. Amino Acids, 48, 2375-2388. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, Z., Yang, Y., Cui, Y., et al. (2020) Tumor-Associated Macrophages Regulate Gastric Cancer Cell Invasion and Metastasis through TGFβ2/NF-κB /Kindlin-2 Axis. Chinese Journal of Cancer Research, 32, 72-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ostuni, R., Kratochvill, F., Murray, P.J., et al. (2015) Macrophages and Cancer: From Mechanisms to Therapeutic Implications. Trends in Immunology, 36, 229-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Achkovad, M. (2016) Role of the Colony-Stimulating Factor (CSF)/CSF-1 Receptor Axis in Cancer. Biochemical Society Transactions, 44, 333-341. [Google Scholar] [CrossRef]
|
|
[12]
|
Ma, F., Zhang, B., Ji, S., et al. (2019) Hypoxic Macrophage-Derived VEGF Promotes Proliferation and Invasion of Gastric Cancer Cells. Digestive Diseases and Sciences, 64, 3154-3163. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Liu, D., Wang, N., Sun, Y., et al. (2018) Expression of VEGF with Tumor Incidence, Metastasis and Prongnosis in Human Gastric Carcinoma. Cancer Biomarkers, 22, 693-700. [Google Scholar] [CrossRef]
|
|
[14]
|
Zhu, J., Zhi, Q., Zhou, B.P., et al. (2016) The Role of Tumor Associat-ed Macrophages in the Tumor Microenvironment: Mechanism and Functions. Anti-Cancer Agents in Medicinal Chemis-try, 16, 1133-1141. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ma, Y.Y., He, X.J., Wang, H.J., et al. (2011) Interac-tion of Coagulation Factors and Tumor-Associated Macrophages Mediates Migration and Invasion of Gastric Cancer. Cancer Science, 102, 336-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Shen, Z.L., Yan, Y.C., Ye, C., et al. (2016) The Effect of Vasohibin-1 Expression and Tumor-Associated Macrophages on the Angiogenesis in Vitro and in Vivo. Tumor Biology, 37, 7267-7276. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
邱森, 孙淼淼, 陈奎生. 肿瘤相关巨噬细胞对肿瘤血管生成影响的研究进展[J]. 细胞与分子免疫学杂志, 2019, 35(5): 469-472.
|
|
[18]
|
Liu, J.Y., Yang, X.J., Geng, X.F., et al. (2016) Prognostic Significance of Tumor-Associated Macrophages Density in Gastric Cancer: A Systemic Review and Meta-Analysis. Minerva Medica, 107, 314-321.
|
|
[19]
|
Tauchi, Y., Tanaka, H., Kumamoto, K., et al. (2016) Tu-mor-Associated Macrophages Induce Capillary Morphogenesis of Lymphatic Endothelial Cells Derived from Human Gastric Cancer. Cancer Science, 107, 1101-1109. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Chen, H., Guan, R., Lei, Y., et al. (2015) Lymphangiogenesis in Gastric Cancer Regulated through Akt/mTOR-VEGF- C/VEGF-D Axis. BMC Cancer, 15, 103. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Pathria, P., Louis, T.L. and Varner, J.A. (2019) Targeting Tu-mor-Associated Macrophages in Cancer. Trends in Immunology, 40, 310-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Liu, Y., Ye, Y. and Zhu, X. (2019) MMP-9 Secreted by Tumor As-sociated Macrophages Promoted Gastric Cancer Metastasis through a PI3K/AKT/Snail Pathway. Biomedicine & Phar-macotherapy, 117, Article ID: 109096. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Eissmann, M.F., Dijkstra, C., Jarnicki, A., et al. (2019) IL-33-Mediated Mast Cell Activation Promotes Gastric Cancer through Macrophage Mobilization. Nature Communica-tions, 10, 2735. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liu, X., Xu, D., Huang, C., et al. (2019) Regu-latory T Cells and M2 Macrophages Present Diverse Prognostic Value in Gastric Cancer Patients with Different Clinico-pathologic Characteristics and Chemotherapy Strategies. Journal of Translational Medicine, 17, 192. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Huang, Y.K., Wang, M., Sun, Y., et al. (2019) Macrophage Spa-tial Heterogeneity in Gastric Cancer Defined by Multiplex Immunohistochemistry. Nature Communications, 10, 3928. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Binenbaum, Y., Fridman, E., Yaari, Z., et al. (2018) Transfer of miRNA in Macrophage-Derived Exosomes Induces Drug Resistance in Pancreatic Adenocarcinoma. Cancer Research, 78, 5287-5299. [Google Scholar] [CrossRef]
|
|
[27]
|
Zhuang, H., Dai, X., Zhang, X., et al. (2020) Sophoridine Suppresses Macrophage-Mediated Immunosuppression through TLR4/IRF3 Pathway and Subsequently Upregulates CD8+ T Cytotoxic Function against Gastric Cancer. Biomedicine & Pharmacotherapy, 121, Article ID: 109636. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, X., Jiao, X., Meng, Y., et al. (2018) Methionine Enkephalin (MENK) Inhibits Human Gastric Cancer through Regulating Tumor Associated Macrophages (TAMs) and PI3K/AKT/mTOR Signaling Pathway inside Cancer Cells. International Immunopharmacology, 65, 312-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yamaguchi, T., Fushida, S., Yamamoto, Y., et al. (2017) Low-Dose Paclitaxel Suppresses the Induction of M2 Macrophages in Gastric Cancer. Oncology Reports, 37, 3341-3350. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cassier, P.A., Italiano, A., Gomez-Roca, C.A., et al. (2015) CSF1R In-hibition with Emactuzumab in Locally Advanced Diffuse-Type Tenosynovial Giant Cell Tumours of the Soft Tissue: A Dose-Escalation and Dose-Expansion Phase 1 Study. The Lancet Oncology, 16, 949-956. [Google Scholar] [CrossRef]
|
|
[31]
|
Aldinucci, D. and Casagrande, N. (2018) Inhibition of the CCL5/CCR5 Axis against the Progression of Gastric Cancer. International Journal of Molecular Sciences, 19, 1477. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zang, X., Zhang, X., Hu, H., et al. (2019) Targeted Delivery of Zoledronate to Tumor-Associated Macrophages for Cancer Immunotherapy. Molecular Pharmaceutics, 16, 2249-2258. [Google Scholar] [CrossRef] [PubMed]
|