|
[1]
|
Magliano, D.J. and Boyko, E.J. (2021) IDF Diabetes Atlas. 10th Edition, International Diabetes Federation, Brus-sels.
|
|
[2]
|
Zheng, Y., Ley, S.H. and Hu, F.B. (2018) Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nature Reviews Endocrinology, 14, 88-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, H.Q., Zhang, W.D., Yuan, B., et al. (2021) Advances in the Regulation of Mammalian Follicle-Stimulating Hormone Secretion. Animals (Basel), 11, 1134. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
赵彩霞, 刘鹏. 卵泡刺激素新的代谢调控功能及对衰老的影响[J]. 生理学报, 2021, 73(5): 755-760. [Google Scholar] [CrossRef]
|
|
[5]
|
Sun, L., Peng, Y., Sharrow, A.C., et al. (2006) FSH Directly Regu-lates Bone Mass. Cell, 125, 247-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, C., Zhang, W., Wang, Y., et al. (2019) Novel Associations between Sex Hormones and Diabetic Vascular Complications in Men and Postmenopausal Women: A Cross-Sectional Study. Cardiovascular Diabetology, 18, 97. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kaze, A.D., Santhanam, P., Musani, S.K., et al. (2021) Metabolic Dyslipidemia and Cardiovascular Outcomes in Type 2 Diabetes Mellitus: Findings From the Look AHEAD Study [Pub-lished Correction Appears in J Am Heart Assoc. 2021 Jul 20; 10(14): e020749]. Journal of the American Heart Associa-tion, 10, e016947. [Google Scholar] [CrossRef]
|
|
[8]
|
Netjasov, A.S., Vujović, S., Ivović, M., et al. (2013) Relationships between Obesity, Lipids and Fasting Glucose in the Menopause. Srpski Arhiv Za Celokupno Lekarstvo, 141, 41-47. [Google Scholar] [CrossRef]
|
|
[9]
|
Emerging Risk Factors Collaboration, Sarwar, N., Gao, P., et al. (2010) Diabetes Mellitus, Fasting Blood Glucose Concentration, and Risk of Vascular Disease: A Collaborative Me-ta-Analysis of 102 Prospective Studies [Published Correction Appears in Lancet. 2010 Sep 18; 376(9745): 958. Hillage, H L [Corrected to Hillege, H L]]. The Lancet, 375, 2215-2222. [Google Scholar] [CrossRef]
|
|
[10]
|
Barton, M. (2013) Cholesterol and Atherosclerosis: Modula-tion by Oestrogen. Current Opinion in Lipidology, 24, 214-220. [Google Scholar] [CrossRef]
|
|
[11]
|
Zhao, D., Guallar, E., Ouyang, P., et al. (2018) Endogenous Sex Hormones and Incident Cardiovascular Disease in Post-Menopausal Women. Journal of the American College of Cardiology, 71, 2555-2566. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhu, D., Chung, H.F., Dobson, A.J., et al. (2020) Type of Meno-pause, Age of Menopause and Variations in the Risk of Incident Cardiovascular Disease: Pooled Analysis of Individual Data from 10 International Studies. Human Reproduction, 35, 1933-1943. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Randolph, J.F., Sowers, M., Bondarenko, I.V., et al. (2004) Change in Estradiol and Follicle-Stimulating Hormone across the Early Menopausal Transition: Effects of Ethnicity and Age. The Journal of Clinical Endocrinology & Metabolism, 89, 1555-1561. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Willeit, P., Tschiderer, L., Allara, E., et al. (2020) Carotid Inti-ma-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk: Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients. Circulation, 142, 621-642. [Google Scholar] [CrossRef]
|
|
[15]
|
Bertone-Johnson, E.R., Virtanen, J.K., Nurmi, T., et al. (2018) Follicle-Stimulating Hormone Levels and Subclinical Atherosclerosis in Older Postmenopausal Women. American Journal of Epidemiology, 187, 16-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wang, N., Shao, H., Chen, Y., et al. (2017) Follicle-Stimulating Hormone, Its Association with Cardiometabolic Risk Factors, and 10-Year Risk of Cardiovascular Disease in Postmenopausal Women. Journal of the American Heart Association, 6, e005918. [Google Scholar] [CrossRef]
|
|
[17]
|
Jung, E.S., Choi, E.K., Park, B.H., et al. (2020) Serum Folli-cle-Stimulating Hormone Levels Are Associated with Cardiometabolic Risk Factors in Post-Menopausal Korean Women. Journal of Clinical Medicine, 9, 1161. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
El Khoudary, S.R., Santoro, N., Chen, H.Y., et al. (2016) Trajectories of Estradiol and Follicle-Stimulating Hormone over the Menopause Transition and Early Markers of Atherosclerosis after Menopause. European Journal of Preventive Cardiology, 23, 694-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Taneja, C., Gera, S., Kim, S.M., Iqbal, J., Yuen, T. and Zaidi, M. (2019) FSH-Metabolic Circuitry and Menopause. Journal of Molecular Endocrinology, 63, R73-R80. [Google Scholar] [CrossRef]
|
|
[20]
|
Matthews, K.A., Chen, X., Barinas-Mitchell, E., et al. (2021) Age at Menopause in Relationship to Lipid Changes and Subclinical Carotid Disease across 20 Years: Study of Women’s Health across the Nation. Journal of the American Heart Association, 10, e021362. [Google Scholar] [CrossRef]
|
|
[21]
|
Serviente, C., Tuomainen, T.P., Virtanen, J., Witkowski, S., Niskanen, L. and Bertone-Johnson, E. (2019) Follicle- Stimulating Hormone Is Associated with Lipids in Postmenopau-sal Women. Menopause, 26, 540-545. [Google Scholar] [CrossRef]
|
|
[22]
|
Guo, Y., Zhao, M., Bo, T., et al. (2019) Blocking FSH In-hibits Hepatic Cholesterol Biosynthesis and Reduces Serum Cholesterol. Cell Research, 29, 151-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Song, Y., Wang, E.S., Xing, L.L., et al. (2016) Folli-cle-Stimulating Hormone Induces Postmenopausal Dyslipidemia through Inhibiting Hepatic Cholesterol Metabolism. The Journal of Clinical Endocrinology & Metabolism, 101, 254-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Xu, Z., Gu, S., Wu, X., et al. (2022) Association of Follicle Stimulating Hormone and Serum Lipid Profiles in Postmenopausal Women. Medicine (Baltimore), 101, e30920. [Google Scholar] [CrossRef]
|
|
[25]
|
Chappel, S.C., Ulloa-Aguirre, A. and Coutifaris, C. (1983) Biosynthesis and Secretion of Follicle-Stimulating Hormone. Endocrine Reviews, 4, 179-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Haldar, S., Agrawal, H., Saha, S., et al. (2022) Overview of Follicle Stimulating Hormone and Its Receptors in Reproduction and in Stem Cells and Cancer Stem Cells. International Journal of Biological Sciences, 18, 675-692. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Bhartiya, D. and Patel, H. (2021) An Overview of FSH-FSHR Biology and Explaining the Existing Conundrums. Journal of Ovarian Research, 14, 144. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Mao, L., Wang, L., Bennett, S., et al. (2022) Effects of Folli-cle-Stimulating Hormone on Fat Metabolism and Cognitive Impairment in Women during Menopause. Frontiers in Physiology, 13, Article ID: 1043237. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cui, H., Zhao, G., Liu, R., et al. (2012) FSH Stimulates Lipid Biosynthesis in Chicken Adipose Tissue by Upregulating the Expression of Its Receptor FSHR. Journal of Lipid Re-search, 53, 909-917. [Google Scholar] [CrossRef]
|
|
[30]
|
Liu, X.M., Chan, H.C., Ding, G.L., et al. (2015) FSH Regulates Fat Accumulation and Redistribution in Aging through the Gαi/Ca(2+)/CREB Pathway. Aging Cell, 14, 409-420. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sayers, N. and Hanyaloglu, A.C. (2018) Intracellular Folli-cle-Stimulating Hormone Receptor Trafficking and Signaling. Frontiers in Endocrinology (Lausanne), 9, 653. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Mattick, L.J., Bea, J.W., Singh, L., et al. (2022) Serum Folli-cle-Stimulating Hormone and 5-Year Change in Adiposity in Healthy Postmenopausal Women. The Journal of Clinical Endocrinology & Metabolism, 107, e3455-e3462. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yang, D., Vuckovic, M.G., Smullin, C.P., et al. (2018) Modest De-creases in Endogenous All-trans-Retinoic Acid Produced by a Mouse Rdh10 Heterozygote Provoke Major Abnormalities in Adipogenesis and Lipid Metabolism. Diabetes, 67, 662-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Khanehzad, M., Abbaszadeh, R., Holakuyee, M., Modarressi, M.H. and Nourashrafeddin, S.M. (2021) FSH Regulates RA Signaling to Commit Spermatogonia into Differentiation Pathway and Meiosis. Reproductive Biology and Endocrinology, 19, 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Jung, H.S., Shimizu-Albergine, M., Shen, X., et al. (2020) TNF-α Induces acyl-CoA Synthetase 3 to Promote Lipid Droplet Formation in Human Endothelial Cells. Journal of Lipid Research, 61, 33-44. [Google Scholar] [CrossRef]
|
|
[36]
|
张荣, 陈雁斌, 袁中华. 脂酰辅酶A长链合成酶3及其相关疾病[J]. 中国生物化学与分子生物学报, 2022, 38(6): 736-741. [Google Scholar] [CrossRef]
|
|
[37]
|
Zhang, Y., Yang, X., Bian, F., et al. (2014) TNF-α Pro-motes Early Atherosclerosis by Increasing Transcytosis of LDL across Endothelial Cells: Crosstalk between NF-κB and PPAR-γ. Journal of Molecular and Cellular Cardiology, 72, 85-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Qian, H., Jia, J., Yang, Y., et al. (2020) A Follicle-Stimulating Hormone Exacerbates the Progression of Periapical Inflammation through Modulating the Cytokine Release in Periodon-tal Tissue. Inflammation, 43, 1572-1585. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Abildgaard, J., Tingstedt, J., Zhao, Y., et al. (2020) Increased Systemic Inflammation and Altered Distribution of T-Cell Subsets in Postmenopausal Women. PLOS ONE, 15, e0235174. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Piao, J., Yin, Y., Zhao, Y., et al. (2022) Folli-cle-Stimulating Hormone Accelerates Atherosclerosis by Activating PI3K/Akt/NF-κB Pathway in Mice with Androgen Deprivation. Journal of Vascular Research, 59, 358-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wu, M., Cao, A., Dong, B., et al. (2011) Reduction of Serum Free Fatty Acids and Triglycerides by Liver-Targeted Expression of Long Chain Acyl-CoA Synthetase 3. International Journal of Molecular Medicine, 27, 655-662. [Google Scholar] [CrossRef] [PubMed]
|