|
[1]
|
Eurosurveillance Editorial Team (2015) WHO Member States Adopt Global Action Plan on Antimicrobial Resistance. Euro Surveill, 20, Article 21137.
|
|
[2]
|
de Oliveira, S.J., da, Costa, J.S., de Fatima, R.D.S.M., et al. (2022) Panorama of Bacterial Infections Caused by Epidemic Resistant Strains. Current Microbiology, 79, Article No. 175. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gashaw, M., Berhane, M., Bekele, S., et al. (2018) Emergence of High Drug Resistant Bacterial Isolates from Patients with Health Care Associated Infections at Jimma University Medical Center: A Cross Sectional Study. Antimicrobial Resistance & Infection Control, 7, Article No. 138. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Gouyau, J., Duval, R.E., Boudier, A., et al. (2021) Investigation of Nanoparticle Metallic Core Antibacterial Activity: Gold and Silver Nanoparticles against Escherichia coli and Staphylococcus aureus. International Journal of Molecular Sciences, 22, Article 1905. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Thai, P., Ha, D., Hanh, N.T., et al. (2018) Bacterial Risk Factors for Treatment Failure and Relapse among Patients with Isoniazid Resistant Tuberculosis. BMC Infectious Diseases, 18, Article No. 112. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gallo, G. and Schillaci, D. (2021) Bacterial Metal Nanoparticles to Develop New Weapons against Bacterial Biofilms and Infections. Applied Microbiology and Biotechnology, 105, 5357-5366. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Xu, C., Akakuru, O.U., Zheng, J., et al. (2019) Applications of Iron Oxide-Based Magnetic Nanoparticles in the Diagnosis and Treatment of Bacterial Infections. Frontiers in Bioengineering and Biotechnology, 7, Article No. 141. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Devasvaran, K. and Lim, V. (2021) Green Synthesis of Metallic Nanoparticles Using Pectin as a Reducing Agent: A Systematic Review of the Biological Activities. Pharmaceutical Biology, 59, 492-501. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Marzi, M., Osanloo, M., Vakil, M.K., et al. (2022) Applications of Metallic Nanoparticles in the Skin Cancer Treatment. BioMed Research International, 2022, Article ID: 2346941. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dakal, T.C., Kumar, A., Majumdar, R.S., et al. (2016) Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Frontiers in Microbiology, 7, Article 1831. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dhayalan, M., Denison, M.I., Anitha, J.L., et al. (2017) In Vitro Antioxidant, Antimicrobial, Cytotoxic Potential of Gold and Silver Nanoparticles Prepared Using Embelia ribes. Natural Product Research, 31, 465-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dreaden, E.C., Alkilany, A.M., Huang, X., et al. (2012) The Golden Age: Gold Nanoparticles for Biomedicine. Chemical Society Reviews, 41, 2740-2779. [Google Scholar] [CrossRef]
|
|
[13]
|
Ayaz, A.K., Subramanian, S., Sivasubramanian, A., et al. (2014) Preparation of Gold Nanoparticles Using Salicornia brachiata Plant Extract and Evaluation of Catalytic and Antibacterial Activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130, 54-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Karakocak, B.B., Raliya, R., Davis, J.T., et al. (2016) Biocompatibility of Gold Nanoparticles in Retinal Pigment Epithelial Cell Line. Toxicology in Vitro, 37, 61-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Shan, L., Wenling, Q., Mauro, P., et al. (2020) Antibacterial Agents Targeting the Bacterial Cell Wall. Current Medicinal Chemistry, 27, 2902-2926. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Strahl, H. and Errington, J. (2017) Bacterial Membranes: Structure, Domains, and Function. Annual Review of Microbiology, 71, 519-538. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Dorobantu, L.S., Fallone, C., Noble, A.J., et al. (2015) Toxicity of Silver Nanoparticles against Bacteria, Yeast, and Algae. Journal of Nanoparticle Research, 17, Article No. 172. [Google Scholar] [CrossRef]
|
|
[18]
|
Sathiyaraj, S., Suriyakala, G., Dhanesh, G.A., et al. (2021) Biosynthesis, Characterization, and Antibacterial Activity of Gold Nanoparticles. Journal of Infection and Public Health, 14, 1842-1847. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Weber, A.G., Birk, B., Muller, C., et al. (2022) The Thyroid Hormone Converting Enzyme Human Deiodinase 1 Is Inhibited by Gold Ions from Inorganic Salts, Organic Substances, and by Small-Size Nanoparticles. Chemico-Biological Interactions, 351, Article ID: 109709. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Shareena, D.T., Zhang, Y. and Yu, H. (2015) Antibacterial Activity and Cytotoxicity of Gold (I) and (III) Ions and Gold Nanoparticles. Biochem Pharmacol (Los Angel), 4, Article No. 199.
|
|
[21]
|
Zhang, Y., Shareena, D.T., Deng, H., et al. (2015) Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. Journal of Environmental Science and Health, Part C, 33, 286-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Gualdi, S., Agnoli, K., Vitale, A., et al. (2022) Identification of Genes Required for Gold and Silver Tolerance in Burkholderia cenocepacia H111 by Transposon Sequencing. Environmental Microbiology, 24, 737-751. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Parijat, R., Tushar, L., Arunangshu, B., Tapan, K., Sau, C.H. and Venkata, R. (2022) Particle Specific Physical and Chemical Effects on Antibacterial Activities: A Comparative Study Involving Gold Nanostars, Nanorods and Nanospheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 634, Article ID: 127915. [Google Scholar] [CrossRef]
|
|
[24]
|
Tamayo, L.A., Zapata, P.A., Vejar, N.D., et al. (2014) Release of Silver and Copper Nanoparticles from Polyethylene Nanocomposites and Their Penetration into Listeria monocytogenes. Materials Science and Engineering: C, 40, 24-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gu, X., Xu, Z., Gu, L., et al. (2021) Preparation and Antibacterial Properties of Gold Nanoparticles: A Review. Environmental Chemistry Letters, 19, 167-187. [Google Scholar] [CrossRef]
|
|
[26]
|
Jency, D.A., Sathyavathi, K. and Umadevi, M.R. (2020) Parimaladevi Enhanced bioactivity of Fe3O4-Au Nanocomposites—A Comparative Antibacterial Study. Materials Letters, 258, Article ID: 126795. [Google Scholar] [CrossRef]
|
|
[27]
|
Lennen, R.M., Kruziki, M.A., Kumar, K., et al. (2011) Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli. Applied and Environmental Microbiology, 77, 8114-8128. [Google Scholar] [CrossRef]
|
|
[28]
|
Mourenza, A., Gil, J.A., Mateos, L.M., et al. (2020) Oxidative Stress-Generating Antimicrobials, a Novel Strategy to Overcome Antibacterial Resistance. Antioxidants (Basel), 9, Article No. 361. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hegemann, D., Hanselmann, B., Zuber, F., et al. (2022) Plasma-Deposited AgOx-Doped TiOx Coatings Enable Rapid Antibacterial Activity Based on ROS Generation. Plasma Processes and Polymers, 19, Article ID: 2100246. [Google Scholar] [CrossRef]
|
|
[30]
|
Yoo, Y., Park, J.C., Cho, M.H., et al. (2018) Lack of a Cytoplasmic RLK, Required for ROS Homeostasis, Induces Strong Resistance to Bacterial Leaf Blight in Rice. Frontiers in Plant Science, 9, Article No. 577. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Qayyum, S., Oves, M. and Khan, A.U. (2017) Obliteration of Bacterial Growth and Biofilm through ROS Generation by Facilely Synthesized Green Silver Nanoparticles. PLOS ONE, 12, e181363. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Seixas, A.F., Quendera, A.P., Sousa, J.P., et al. (2022) Bacterial Response to Oxidative Stress and RNA Oxidation. Frontiers in Genetics, 12, Article ID: 821535. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chatterjee, A.K., Chakraborty, R. and Basu, T. (2014) Mechanism of Antibacterial Activity of Copper Nanoparticles. Nanotechnology, 25, Article ID: 135101. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhang, Y.M. and Rock, C.O. (2008) Membrane Lipid Homeostasis in Bacteria. Nature Reviews Microbiology, 6, 222-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Perez-Diaz, M.A., Boegli, L., James, G., et al. (2015) Silver Nanoparticles with Antimicrobial Activities against Streptococcus mutans and Their Cytotoxic Effect. Materials Science and Engineering: C, 55, 360-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, Y., Wan, J., Miron, R.J., et al. (2016) Antibacterial Properties and Mechanisms of Gold-Silver Nanocages. Nanoscale, 8, 11143-11152. [Google Scholar] [CrossRef]
|
|
[37]
|
Bing, W., Sun, H., Wang, F., et al. (2018) Hydrogen-Producing Hyperthermophilic Bacteria Synthesized Size-Controllable Fine Gold Nanoparticles with Excellence for Eradicating Biofilm and Antibacterial Applications. Journal of Materials Chemistry B, 6, 4602-4609. [Google Scholar] [CrossRef]
|
|
[38]
|
Umamaheswari, K. and Abirami, M. (2023) Assessment of Antifungal Action Mechanism of Green Synthesized Gold Nanoparticles (AuNPs) Using Allium sativum on Candida Species. Materials Letters, 333, Article ID: 133616. [Google Scholar] [CrossRef]
|
|
[39]
|
Xu, C., Li, J.L., Yang, L.Q., Shi, F., Yang, L. and Ye, M. (2017) Antibacterial Activity and a Membrane Damage Mechanism of Lachnum YM30 Melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food Control, 73, 1445-1451. [Google Scholar] [CrossRef]
|
|
[40]
|
Hong, S. and Pedersen, P.L. (2008) ATP Synthase and the Actions of Inhibitors Utilized to Study Its Roles in Human Health, Disease, and Other Scientific Areas. Microbiology and Molecular Biology Reviews, 72, 590-641. [Google Scholar] [CrossRef]
|
|
[41]
|
Hards, K. and Cook, G.M. (2018) Targeting Bacterial Energetics to Produce New Antimicrobials. Drug Resistance Updates, 36, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Bisio, A., Schito, A.M., Pedrelli, F., et al. (2020) Antibacterial and ATP Synthesis Modulating Compounds from Salvia tingitana. Journal of Natural Products, 83, 1027-1042. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Xie, Y., Yang, J., Zhang, J., et al. (2020) Activating the Antibacterial Effect of 4, 6-Diamino-2-Pyrimidinethiol-Modi- fied Gold Nanoparticles by Reducing Their Sizes. Angewandte Chemie International Edition, 59, 23471-23475. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhao, Y., Ye, C., Liu, W., et al. (2014) Tuning the Composition of AuPt Bimetallic Nanoparticles for Antibacterial Application. Angewandte Chemie International Edition, 53, 8127-8131. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Khan, T., Sankhe, K., Suvarna, V., et al. (2018) DNA Gyrase Inhibitors: Progress and Synthesis of Potent Compounds as Antibacterial Agents. Biomedicine & Pharmacotherapy, 103, 923-938. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Arafa, M.G., El-Kased, R.F. and Elmazar, M.M. (2018) Thermoresponsive Gels Containing Gold Nanoparticles as Smart Antibacterial and Wound Healing Agents. Scientific Reports, 8, Article No. 13674. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Duran, N., Nakazato, G. and Seabra, A.B. (2016) Antimicrobial Activity of Biogenic Silver Nanoparticles, and Silver Chloride Nanoparticles: An Overview and Comments. Applied Microbiology and Biotechnology, 100, 6555-6570. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Borisov, V.B., Siletsky, S.A., Nastasi, M.R., et al. (2021) ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants, 10, Article 839. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lee, H. and Lee, D.G. (2018) Gold Nanoparticles Induce a Reactive Oxygen Species-Independent Apoptotic Pathway in Escherichia coli. Colloids and Surfaces B: Biointerfaces, 167, 1-7.
http://www.mlr.gov.cn/xwdt/jrxw/201201/t20120109_1056142.htm,2012-01-09 [Google Scholar] [CrossRef] [PubMed]
|