|
[1]
|
Mitra, S. (2020) Exploring the Molecular Landscape of Cutaneous Melanoma. Ph.D. Thesis, Lund University, Lund.
|
|
[2]
|
Lo, J.A. and Fisher, D.E. (2014) The Melanoma Revolution: From UV Carcinogenesis to a New Era in Therapeutics. Science, 346, 945-949. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Schadendorf, D., van Akkooi, A.C.J., Berking, C., Griewank, K.G., Gutzmer, R., Hauschild, A., Stang, A., Roesch, A. and Ugurel, S. (2018) Melanoma. The Lancet, 392, 971-984. [Google Scholar] [CrossRef]
|
|
[4]
|
Ozretic, P., Hanzic, N., Proust, B., Sabol, M., Trnski, D., Radic, M., Musani, V., Ciribilli, Y., Milas, I., Puljiz, Z., Bosnar, M.H., Levanat, S. and Slade, N. (2019) Expression Profiles of p53/p73, NME and GLI Families in Metastatic Melanoma Tissue and Cell Lines. Scientific Reports, 9, 12470. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Miller, K.D., Nogueira, L., Devasia, T., Mariotto, A.B., Yabroff, K.R., Jemal, A., Kramer, J. and Siegel, R.L. (2022) Cancer Treatment and Survivorship Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 409-436. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sun, L., Guan, Z., Wei, S., Tan, R., Li, P. and Yan, L. (2019) Identification of Long Non-Coding and Messenger RNAs Differentially Expressed Between Primary and Metastatic Melanoma. Frontiers in Genetics, 10, 292. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Trujillo, J.A., Sweis, R.F., Bao, R.Y. and Luke, J.J. (2018) T Cell-Inflamed versus Non-T Cell-Inflamed Tumors: A Conceptual Framework for Cancer Immunotherapy Drug Development and Combination Therapy Selection. Cancer Immunology Research, 6, 990-1000. [Google Scholar] [CrossRef]
|
|
[8]
|
Azimi, F., Scolyer, R.A., Rumcheva, P., Moncrieff, M., Murali, R., McCarthy, S.W., Saw, R.P. and Thompson, J.F. (2012) Tumor-Infiltrating Lymphocyte Grade Is an Independent Predictor of Sentinel Lymph Node Status and Survival in Patients with Cutaneous Melanoma. Journal of Clinical Oncology, 30, 2678-2683. [Google Scholar] [CrossRef]
|
|
[9]
|
Ren, X., Zhang, L., Zhang, Y., Li, Z., Siemers, N. and Zhang, Z. (2021) Insights Gained from Single-Cell Analysis of Immune Cells in the Tumor Microenvironment. Annual Review of Immunology, 39, 583-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., Lao, K. and Surani, M.A. (2009) mRNA-Seq Whole-Transcriptome Analysis of a Single Cell. Nature Methods, 6, 377-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
操利超, 巴颖, 张核子. 单细胞测序方法研究进展[J]. 生物信息学, 2022, 20(2): 91-99.
|
|
[12]
|
刘强, 方仪, 王靖. 单细胞测序技术在乳腺癌研究中的应用进展[J]. 中国癌症杂志, 2022, 32(7): 635-642.
|
|
[13]
|
Hwang, B., Lee, J.H. and Bang, D. (2018) Single-Cell RNA Sequencing Technologies and Bioinformatics Pipelines. Experimental & Molecular Medicine, 50, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Greenfield, E.A. (2019) Single-Cell Cloning of Hybridoma Cells by Limiting Dilution. Cold Spring Harbor Protocols, 2019, 726-728. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Xu, W.H. (2018) Microinjection and Micromanipulation: A Historical Perspective. Methods in Molecular Biology (Clifton, N.J.), 1874, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pan, J. and Wan, J. (2020) Methodological Comparison of FACS and MACS Isolation of Enriched Microglia and Astrocytes from Mouse Brain. Journal of Immunological Methods, 486, Article ID: 112834. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Guneykaya, D., Ivanov, A., Hernandez, D.P., et al. (2018) Transcriptional and Translational Differences of Microglia from Male and Female Brains. Cell Reports, 24, 2773-2783.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Mickler, E.A., Zhou, H.X., Phang, T.L., et al. (2021) Low-Coverage Whole Genome Sequencing Using Laser Capture Microscopy with Combined Digital Droplet PCR: An Effective Tool to Study Copy Number and Kras Mutations in Early Lung Adenocarcinoma Development. International Journal of Molecular Sciences, 22, 12034. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bowman, E.K. and Alper, H.S. (2020) Microdroplet-Assisted Screening of Biomolecule Production for Metabolic Engineering Applications. Trends in Biotechnology, 38, 701-714. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Picelli, S., Björklund, Å.K., Faridani, O.R., Sagasser, S., Winberg, G. and Sandberg, R. (2013) Smart-seq2 for Sensitive Full-Length Transcriptome Profiling in Single Cells. Nature Methods, 10, 1096-1098. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Picelli, S., Faridani, O.R., Björklund, Å.K., Winberg, G., Sagasser, S. and Sandberg, R. (2014) Full-Length RNA-seq from Single Cells Using Smart-seq2. Nature Protocols, 9, 171-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hashimshony, T., Senderovich, N., Avital, G., et al. (2016) CEL-Seq2: Sensitive Highly-Multiplexed Single-Cell RNA-Seq. Genome Biology, 17, 77. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Macosko, E.Z., Basu, A., Satija, R., et al. (2015) Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell, 161, 1202-1214. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., Cohen, N., Jung, S., Tanay, A. and Amit, I. (2014) Massively Parallel Single-Cell RNA-seq for Marker-Free Decomposition of Tissues into Cell Types. Science, 343, 776-779. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhang, Q.M., He, Y., Luo, N., et al. (2019) Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell, 179, 829-845.e20. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Jeon, S.A., Park, J.L., Park, S.-J., Kim, J.H., Goh, S.-H., Han, J.-Y. and Kim, S.-Y. (2021) Comparison between MGI and Illumina Sequencing Platforms for Whole Genome Sequencing. Genes & Genomics, 43, 713-724. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sandoval-Velasco, M., Rodríguez, J.A., Perez Estrada, C., Zhang, G.J., Lieberman Aiden, E., Marti-Renom, M.A., Gilbert, M., Thomas, P. and Smith, O. (2020) Hi-C Chromosome Conformation Capture Sequencing of Avian Genomes Using the BGISEQ-500 Platform. Giga Science, 9, giaa087. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yin, Y.X., Butler, C. and Zhang, Q.H. (2021) Challenges in the Application of NGS in the Clinical Laboratory. Human Immunology, 82, 812-819. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. and Satija, R. (2018) Integrating Single-Cell Transcriptomic Data across Different Conditions, Technologies, and Species. Nature Biotechnology, 36, 411-420. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
McCarthy, D.J., Campbell, K.R., Lun, A.T.L. and Wills, Q.F. (2017) Scater: Pre-Processing, Quality Control, Normalization and Visualization of Single-Cell RNA-seq Data in R. Bioinformatics, 33, 1179-1186. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Lun, A.T., McCarthy, D.J. and Marioni, J.C. (2016) A Step-by-Step Workflow for Low-Level Analysis of Single-Cell RNA-seq Data with Bioconductor. F1000research, 5, 2122. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Cao, J.Y., Spielmann, M., Qiu, X.J., Huang, X.F., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F.J., Trapnell, C. and Shendure, J. (2019) The Single-Cell Transcriptional Landscape of Mammalian Organogenesis. Nature, 566, 496-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ji, Z.C. and Ji, H.K. (2016) TSCAN: Pseudo-Time Reconstruction and Evaluation in Single-Cell RNA-seq Analysis. Nucleic Acids Research, 44, e117-e117. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Efremova, M., Vento-Tormo, M., Teichmann, S.A. and Vento-Tormo, R. (2020) CellPhoneDB: Inferring Cell-Cell Communication from Combined Expression of Multi-Subunit Ligand-Receptor Complexes. Nature Protocols, 15, 1484-1506. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Jin, S.Q., Guerrero-Juarez, C.F., Zhang, L.H., Chang, I., Ramos, R., Kuan, C.-H., Myung, P., Plikus, M.V. and Nie, Q. (2021) Inference and Analysis of Cell-Cell Communication Using CellChat. Nature Communications, 12, 1088. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H.N., Treacy, D., Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., Fallahi-Sichani, M., Dutton-Regester, K., Lin, J.R., Cohen, O., Shah, P., Lu, D., Genshaft, A.S., Hughes, T.K., Ziegler, C.G., Kazer, S.W., Gaillard, A., Kolb, K.E., Villani, A.C., Johannessen, C.M., Andreev, A.Y., Van Allen, E.M., Bertagnolli, M., Sorger, P.K., Sullivan, R.J., Flaherty, K.T., Frederick, D.T., Jane-Valbuena, J., Yoon, C.H., Rozenblatt-Rosen, O., Shalek, A.K., Regev, A. and Garraway, L.A. (2016) Dissecting the Multicellular Ecosystem of Metastatic Melanoma by Single-Cell RNA-seq. Science, 352, 189-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kunz, M., Löffler-Wirth, H., Dannemann, M., Willscher, E., Doose, G., Kelso, J., Kottek, T., Nickel, B., Hopp, L., Landsberg, J., Hoffmann, S., Tüting, T., Zigrino, P., Mauch, C., Utikal, J., Ziemer, M., Schulze, H.-J., Hölzel, M., Roesch, A., Kneitz, S., Meierjohann, S., Bosserhoff, A., Binder, H. and Schartl, M. (2018) RNA-seq Analysis Identifies Different Transcriptomic Types and Developmental Trajectories of Primary Melanomas. Oncogene, 37, 6136-6151. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Karras, P., Bordeu, I., Pozniak, J., Nowosad, A., Pazzi, C., Van Raemdonck, N., Landeloos, E., Van Herck, Y., Pedri, D., Bervoets, G., Makhzami, S., Khoo, J.H., Pavie, B., Lamote, J., Marin-Bejar, O., Dewaele, M., Liang, H., Zhang, X., Hua, Y., Wouters, J., Browaeys, R., Bergers, G., Saeys, Y., Bosisio, F., van den Oord, J., Lambrechts, D., Rustgi, A.K., Bechter, O., Blanpain, C., Simons, B.D., Rambow, F. and Marine, J.C. (2022) A Cellular Hierarchy in Melanoma Uncouples Growth and Metastasis. Nature, 610, 190-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Goding, C.R. and Arnheiter, H. (2019) MITF—The First 25 Years. Genes & Development, 33, 983-1007. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
McGranahan, N. and Swanton, C. (2017) Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell, 168, 613-628. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Arozarena, I. and Wellbrock, C. (2019) Phenotype Plasticity as Enabler of Melanoma Progression and Therapy Resistance. Nature Reviews Cancer, 19, 377-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Deng, W., Ma, Y., Su, Z., Liu, Y., Liang, P., Huang, C., Liu, X., Shao, J., Zhang, Y., Zhang, K., Chen, J. and Li, R. (2021) Single-Cell RNA-Sequencing Analyses Identify Heterogeneity of CD8(+) T Cell Subpopulations and Novel Therapy Targets in Melanoma. Molecular Therapy-Oncolytics, 20, 105-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Bosisio, F.M., Antoranz, A., van Herck, Y., Bolognesi, M.M., Marcelis, L., Chinello, C., Wouters, J., Magni, F., Alexopoulos, L., Stas, M., Boecxstaens, V., Bechter, O., Cattoretti, G. and van den Oord, J. (2020) Functional Heterogeneity of Lymphocytic Patterns in Primary Melanoma Dissected through Single-Cell Multiplexing. eLife, 9, e53008. [Google Scholar] [CrossRef]
|
|
[44]
|
Novotný, J., Strnadová, K., Dvořánková, B., Kocourková, Š., Jakša, R., Dundr, P., Pačes, V., Smetana, K., Kolář, M. and Lacina, L. (2020) Single-Cell RNA Sequencing Unravels Heterogeneity of the Stromal Niche in Cutaneous Melanoma Heterogeneous Spheroids. Cancers, 12, 3324. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Newman, A.M., Steen, C.B., Liu, C.L., Gentles, A.J., Chaudhuri, A.A., Scherer, F., Khodadoust, M.S., Esfahani, M.S., Luca, B.A., Steiner, D., Diehn, M. and Alizadeh, A.A. (2019) Determining Cell Type Abundance and Expression from Bulk Tissues with Digital Cytometry. Nature Biotechnology, 37, 773-782. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Postow, M.A., Callahan, M.K. and Wolchok, J.D. (2015) Immune Checkpoint Blockade in Cancer Therapy. Journal of Clinical Oncology, 33, 1974-1982. [Google Scholar] [CrossRef]
|
|
[47]
|
Redman, J.M., Gibney, G.T. and Atkins, M.B. (2016) Advances in Immunotherapy for Melanoma. BMC Medicine, 14, 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Cabello-Aguilar, S., Alame, M., Kon-Sun-Tack, F., Fau, C., Lacroix, M. and Colinge, J. (2020) Single Cell Signal R: Inference of Intercellular Networks from Single-Cell Transcriptomics. Nucleic Acids Research, 48, e55. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wang, Y.X., et al. (2019) iTALK: An R Package to Characterize and Illustrate Intercellular Communication. [Google Scholar] [CrossRef]
|
|
[50]
|
Browaeys, R., Saelens, W. and Saeys, Y. (2020) NicheNet: Modeling Intercellular Communication by Linking Ligands to Target Genes. Nature Methods, 17, 159-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Liu, Y.T., Shou, Y.H., Zhu, R.H., et al. (2022) Construction and Validation of a Ferroptosis-Related Prognostic Signature for Melanoma Based on Single-Cell RNA Sequencing. Frontiers in Cell and Developmental Biology, 10, Article ID: 818457. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Wang, F., Zheng, A.F., Zhang, D.L., et al. (2022) Molecular Profiling of Core Immune-Escape Genes Highlights LCK as an Immune-Related Prognostic Biomarker in Melanoma. Frontiers in Immunology, 13, Article ID: 1024931. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Hayward, N.K., Wilmott, J.S., Waddell, N., Johansson, P.A., Field, M.A., Nones, K., et al. (2017) Whole-Genome Landscapes of Major Melanoma Subtypes. Nature, 545, 175-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Randic, T., Kozar, I., Margue, C., Utikal, J. and Kreis, S. (2021) NRAS Mutant Melanoma: Towards Better Therapies. Cancer Treatment Reviews, 99, Article ID: 102238. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Loeffler-Wirth, H., Binder, H., Willscher, E., Gerber, T. and Kunz, M. (2018) Pseudotime Dynamics in Melanoma Single-Cell Transcriptomes Reveals Different Mechanisms of Tumor Progression. Biology, 7, 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Schmidt, M., Sünke M., Lena, L.-W., et al. (2021) Single-Cell Trajectories of Melanoma Cell Resistance to Targeted Treatment. Cancer Biology and Medicine, 19, 56-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Pires Da Silva, I., Ahmed, T., Reijers, I.L.M., Weppler, A.M., et al. (2021) Ipilimumab Alone or Ipilimumab plus Anti-PD-1 Therapy in Patients with Metastatic Melanoma Resistant to Anti-PD-(L)1 Monotherapy: A Multicentre, Retrospective, Cohort Study. The Lancet Oncology, 22, 836-847. [Google Scholar] [CrossRef]
|
|
[58]
|
Hossain, S.M. and Eccles, M.R. (2023) Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance. International Journal of Molecular Sciences, 24, 1601. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Cao, Y., Zhu, J.J., Han, G.C., Jia, P.L. and Zhao, Z.M. (2017) scRNASeqDB: A Database for Gene Expression Profiling in Human Single Cell by RNA-seq. [Google Scholar] [CrossRef]
|
|
[60]
|
Ner-Gaon, H., Melchior, A., Golan, N., Ben-Haim, Y. and Shay, T. (2017) JingleBells: A Repository of Immune-Related Single-Cell RNA-Sequencing Datasets. The Journal of Immunology, 198, 3375-3379. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Yuan, H.T., Yan, M., Zhang, G.X., Liu, W., Deng, C.Y., Liao, G.M., et al. (2019) CancerSEA: A Cancer Single-Cell State Atlas. Nucleic Acids Research, 47, D900-D908. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Wang, Z.S., Feng, X.K. and Li, S.C. (2019) SCDevDB: A Database for Insights into Single-Cell Gene Expression Profiles during Human Developmental Processes. Frontiers in Genetics, 10, 903. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Mohanraj, S., Díaz-Mejía, J.J., Pham, M.D., Elrick, H., Husić, M., Rashid, S., et al. (2020) Crescent: Cancer Single Cell Expression Toolkit. Nucleic Acids Research, 48, W372-W379. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Li, P.-H., Kong, X.-Y., He, Y.-Z., Liu, Y., Peng, X., Li, Z.-H., Xu, H., Luo, H. and Park, J. (2022) Recent Developments in Application of Single-Cell RNA Sequencing in the Tumour Immune Microenvironment and Cancer Therapy. Military Medical Research, 9, 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Biermann, J., Melms, J.C., Amin, A.D., Wang, Y., Caprio, L.A., Karz, A., Tagore, S., Barrera, I., Ibarra-Arellano, M.A., Andreatta, M., Fullerton, B.T., Gretarsson, K.H., Sahu, V., Mangipudy, V.S., Nguyen, T.T.T., Nair, A., Rogava, M., Ho, P., Koch, P.D., Banu, M., Humala, N., Mahajan, A., Walsh, Z.H., Shah, S.B., Vaccaro, D.H., Caldwell, B., Mu, M., Wunnemann, F., Chazotte, M., Berhe, S., Luoma, A.M., Driver, J., Ingham, M., Khan, S.A., Rapisuwon, S., Slingluff, C.L., Eigentler, T., Rocken, M., Carvajal, R., Atkins, M.B., Davies, M.A., Agustinus, A., Bakhoum, S.F., Azizi, E., Siegelin, M., Lu, C., Carmona, S.J., Hibshoosh, H., Ribas, A., Canoll, P., Bruce, J.N., Bi, W.L., Agrawal, P., Schapiro, D., Hernando, E., Macosko, E.Z., Chen, F., Schwartz, G.K. and Izar, B. (2022) Dissecting the Treatment-Naive Ecosystem of Human Melanoma Brain Metastasis. Cell, 185, 2591-2608.e30. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Thrane, K., Eriksson, H., Maaskola, J., Hansson, J. and Lundeberg, J. (2018) Spatially Resolved Transcriptomics Enables Dissection of Genetic Heterogeneity in Stage III Cutaneous Malignant Melanoma. Cancer Research, 78, 5970-5979. [Google Scholar] [CrossRef]
|
|
[67]
|
Barrett, T., Suzek, T. O., Troup, D.B., Wilhite, S.E., Ngau, W.C., Ledoux, P., Rudnev, D., Lash, A.E., Fujibuchi, W. and Edgar, R. (2005) NCBI GEO: Mining Millions of Expression Profiles—Database and Tools. Nucleic Acids Research, 33, D562-D566. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P., Carninci, P., Clatworthy, M., Clevers, H., Deplancke, B., Dunham, I., Eberwine, J., Eils, R., Enard, W., Farmer, A., Fugger, L., Gottgens, B., Hacohen, N., Haniffa, M., Hemberg, M., Kim, S., Klenerman, P., Kriegstein, A., Lein, E., Linnarsson, S., Lundberg, E., Lundeberg, J., Majumder, P., Marioni, J.C., Merad, M., Mhlanga, M., Nawijn, M., Netea, M., Nolan, G., Pe'Er, D., Phillipakis, A., Ponting, C.P., Quake, S., Reik, W., Rozenblatt-Rosen, O., Sanes, J., Satija, R., Schumacher, T.N., Shalek, A., Shapiro, E., Sharma, P., Shin, J.W., Stegle, O., Stratton, M., Stubbington, M.J.T., Theis, F.J., Uhlen, M., van Oudenaarden, A., Wagner, A., Watt, F., Weissman, J., Wold, B., Xavier, R. and Yosef, N. (2017) The Human Cell Atlas. eLife, 6, e27041. [Google Scholar] [CrossRef]
|
|
[69]
|
Papatheodorou, I., Moreno, P., Manning, J., Fuentes, A.M., George, N., Fexova, S., Fonseca, N.A., Fullgrabe, A., Green, M., Huang, N., Huerta, L., Iqbal, H., Jianu, M., Mohammed, S., Zhao, L., Jarnuczak, A.F., Jupp, S., Marioni, J., Meyer, K., Petryszak, R., Prada, M.C.A., Talavera-Lopez, C., Teichmann, S., Vizcaino, J.A. and Brazma, A. (2020) Expression Atlas Update: From Tissues to Single Cells. Nucleic Acids Research, 48, D77-D83. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Franzen, O., Gan, L.M. and Bjorkegren, J.L.M. (2019) PanglaoDB: A Web Server for Exploration of Mouse and Human Single-Cell RNA Sequencing Data. Database: The Journal of Biological Databases and Curation, 2019, baz046. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Christensen, E., Naidas, A., Husic, M. and Shooshtari, P. (2020) TMExplorer: A Tumour Microenvironment Single-Cell RNAseq Database and Search Tool. PLOS ONE, 17, e0272302. [Google Scholar] [CrossRef]
|