| [1] | Anderson, J., Majzner, R.G. and Sondel, P.M. (2022) Immunotherapy of Neuroblastoma: Facts and Hopes. Clinical Cancer Research, 28, 3196-3206. https://doi.org/10.1158/1078-0432.CCR-21-1356
 | 
                     
                                
                                    
                                        | [2] | Smith, M.A., Altekruse. S.F., Adamson. P.C., Reaman, G.H. and Seibel, N.L. (2014) Declining Childhood and Adolescent Cancer Mortality. Cancer, 120, 2497-2506. https://doi.org/10.1002/cncr.28748
 | 
                     
                                
                                    
                                        | [3] | Hains, A.E., Uppal, S., Cao, J.Z., Salwen, H.R., Applebaum, M.A., Cohn, S.L., et al. (2022) MYCN and HIF-1 Directly Regulate TET1 Expression to Control 5-hmC Gains and Enhance Neuroblastoma Cell Migration in Hypoxia. Epigenetics, 17, 2056-2074. https://doi.org/10.1080/15592294.2022.2106078
 | 
                     
                                
                                    
                                        | [4] | Cohn, S.L., Pearson, A.D., London, W.B., Monclair, T., Ambros, P.F., Brodeur, G.M., et al. (2009) The International Neuroblastoma Risk Group (INRG) Classification System: An INRG Task Force Report. Journal of Clinical Oncology, 27, 289-297. https://doi.org/10.1200/JCO.2008.16.6785
 | 
                     
                                
                                    
                                        | [5] | Moreno, L., Guo, D., Irwin, M.S., Berthold, F., Hogarty, M., Ka-mijo, T., et al. (2021) A Nomogram of Clinical and Biologic Factors to Predict Survival in Children Newly Diagnosed with High-Risk Neuroblastoma: An International Neuroblastoma Risk Group Project. Pediatric Blood & Cancer, 68, e28794. https://doi.org/10.1002/pbc.28794
 | 
                     
                                
                                    
                                        | [6] | Bosse, K.R. and Maris, J.M. (2016) Advances in the Translational Genomics of Neuroblastoma: From Improving Risk Stratification and Revealing Novel Biology to Identifying Actionable Genomic Alterations. Cancer, 122, 20-33. https://doi.org/10.1002/cncr.29706
 | 
                     
                                
                                    
                                        | [7] | Vaupel, P., Kelleher, D.K. and Thews, O. (1998) Modulation of Tumor Oxygenation. International Journal of Radiation Oncology, Biology, Physics, 42, 843-838. https://doi.org/10.1016/S0360-3016(98)00324-1
 | 
                     
                                
                                    
                                        | [8] | Curro, M., Ferlazzo, N., Giunta, M.L., Montalto, A.S., Rus-so, T., Arena, S., et al. (2020) Hypoxia-Dependent Expression of TG2 Isoforms in Neuroblastoma Cells as Consequence of Different MYCN Amplification Status. International Journal of Molecular Sciences, 21, Article 1364. https://doi.org/10.3390/ijms21041364
 | 
                     
                                
                                    
                                        | [9] | Bao, M.H. and Wong, C.C. (2021) Hypoxia, Metabolic Reprogram-ming, and Drug Resistance in Liver Cancer. Cells, 10, Article 1715. https://doi.org/10.3390/cells10071715
 | 
                     
                                
                                    
                                        | [10] | Hao, S., Zhu, X., Liu, Z., Wu, X., Li, S., Jiang, P., et al. (2021) Chron-ic Intermittent Hypoxia Promoted Lung Cancer Stem Cell-Like Properties via Enhancing Bach1 Expression. Respiratory Research, 22, Article No. 58. https://doi.org/10.1186/s12931-021-01655-6
 | 
                     
                                
                                    
                                        | [11] | Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., et al. (2019) Role of Hypoxia in Cancer Therapy by Regulating the Tumor Microenvironment. Molecular Cancer, 18, Article No.157. https://doi.org/10.1186/s12943-019-1089-9
 | 
                     
                                
                                    
                                        | [12] | Marshall, G.M., Carter, D.R., Cheung, B.B., Liu, T., Mateos, M.K., Meyerowitz, J.G., et al. (2014) The Prenatal Origins of Cancer. Nature Reviews Cancer, 14, 277-289. https://doi.org/10.1038/nrc3679
 | 
                     
                                
                                    
                                        | [13] | Smith, M.A., Seibel, N.L., Altekruse, S.F., Ries, L.A., Melbert, D.L., O’Leary, M., et al. (2010) Outcomes for Children and Adolescents with Cancer: Challenges for the Twenty-First Century. Journal of Clinical Oncology, 28, 2625-2634. https://doi.org/10.1200/JCO.2009.27.0421
 | 
                     
                                
                                    
                                        | [14] | Matthay, K.K., Maris, J.M., Schleiermacher, G., Nakagawara, A., Mackall, C.L., Diller, L., et al. (2016) Neuroblastoma. Nature Reviews Disease Primers, 2, Article No. 16078. https://doi.org/10.1038/nrdp.2016.78
 | 
                     
                                
                                    
                                        | [15] | Shao, C., Yang, F., Miao, S., Liu, W., Wang, C., Shu, Y., et al. (2018) Role of Hypoxia-Induced Exosomes in Tumor Biology. Molecular Cancer, 17, Article No. 120. https://doi.org/10.1186/s12943-018-0869-y
 | 
                     
                                
                                    
                                        | [16] | Wigerup, C., Påhlman, S. and Bexell, D. (2016) Therapeutic Tar-geting of Hypoxia and Hypoxia-Inducible Factors in Cancer. Pharmacology & Therapeutics, 164, 152-169. https://doi.org/10.1016/j.pharmthera.2016.04.009
 | 
                     
                                
                                    
                                        | [17] | Wilson, W.R. and Hay, M.P. (2011) Targeting Hypoxia in Cancer Therapy. Nature Reviews Cancer, 11, 393-410. https://doi.org/10.1038/nrc3064
 | 
                     
                                
                                    
                                        | [18] | Roma-Rodrigues, C., Mendes, R., Baptista, P.V. and Fernandes, A.R. (2019) Targeting Tumor Microenvironment for Cancer Therapy. International Journal of Molecular Sciences, 20, Article 840. https://doi.org/10.3390/ijms20040840
 | 
                     
                                
                                    
                                        | [19] | Suthen, S., Lim, C.J., Nguyen, P.H.D., Dutertre, C.A., Lai, H.L.H., Wasser, M., et al. (2022) Hypoxia-Driven Immunosuppression by Treg and Type-2 Conventional Dendritic Cells in HCC. Hepatology, 76, 1329-1344. https://doi.org/10.1002/hep.32419
 | 
                     
                                
                                    
                                        | [20] | Wang, R., Godet, I., Yang, Y., Salman, S., Lu, H., Lyu, Y., et al. (2021) Hypoxia-Inducible Factor-Dependent ADAM12 Expression Mediates Breast Cancer Invasion and Metastasis. Proceed-ings of the National Academy of Sciences, 118, e2020490118. https://doi.org/10.1073/pnas.2020490118
 | 
                     
                                
                                    
                                        | [21] | Hoffmann, C., Mao, X., Brown-Clay, J., Moreau, F., Al Absi, A., Wurzer, H., et al. (2018) Hypoxia Promotes Breast Cancer Cell Invasion through HIF-1α-Mediated Up-Regulation of the Invadopodial Actin Bundling Protein CSRP2. Scientific Reports, 8, Article No. 10191. https://doi.org/10.1038/s41598-018-28637-x
 | 
                     
                                
                                    
                                        | [22] | Chen, L., Long, X., Duan, S., Liu, X., Chen, J., Lan, J., et al. (2020) CSRP2 Suppresses Colorectal Cancer Progression via p130Cas/Rac1 Axis-Meditated ERK, PAK, and HIPPO Signaling Pathways. Theranostics, 10, 11063-11079. https://doi.org/10.7150/thno.45674
 | 
                     
                                
                                    
                                        | [23] | Cao, Q., Shen, Y., Liu, X., Yu, X., Yuan, P., Wan, R., et al. (2017) Phe-notype and Functional Analyses in a Transgenic Mouse Model of Left Ventricular Noncompaction Caused by a DTNA Mutation. International Heart Journal, 58, 939-947. https://doi.org/10.1536/ihj.16-019
 | 
                     
                                
                                    
                                        | [24] | Hu, Z.G., Zhang, S., Chen, Y.B., Cao, W., Zhou, Z.Y., Zhang, J.N., et al. (2020) DTNA Promotes HBV-Induced Hepatocellular Carcinoma Progression by Activating STAT3 and Regulating TGFbeta1 and P53 Signaling. Life Sciences, 258, Article 118029. https://doi.org/10.1016/j.lfs.2020.118029
 | 
                     
                                
                                    
                                        | [25] | Fu, G., Pei, Z. and Song, N. (2021) Oncogenic microRNA-301b Regulates Tumor Repressor Dystrobrevin Alpha to Facilitate Cell Growth, Invasion and Migration in Esophageal Cancer. Esophagus, 18, 315-325. https://doi.org/10.1007/s10388-020-00764-3
 | 
                     
                                
                                    
                                        | [26] | Hu, C.L., Chen, B.Y., Li, Z., Yang, T., Xu, C.H., Yang, R., et al. (2022) Targeting UHRF1-SAP30-MXD4 Axis for Leukemia Initiating Cell Eradication in Myeloid Leukemia. Cell Re-search, 32, 1105-1123. https://doi.org/10.1038/s41422-022-00735-6
 | 
                     
                                
                                    
                                        | [27] | Tang, Y., Zhang, H., Chen, L., Zhang, T., Xu, N. and Huang, Z. (2022) Identification of Hypoxia-Related Prognostic Signature and Competing Endogenous RNA Regulatory Axes in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 23, Article 13590. https://doi.org/10.3390/ijms232113590
 | 
                     
                                
                                    
                                        | [28] | Su, Z., Kishida, S., Tsubota, S., Sakamoto, K., Cao, D., Kiyonari, S., et al. (2017) Neurocan, an Extracellular Chondroitin Sulfate Proteoglycan, Stimulates Neuroblastoma Cells to Promote Malignant Phenotypes. Oncotarget, 8, 106296- 106310. https://doi.org/10.18632/oncotarget.22435
 | 
                     
                                
                                    
                                        | [29] | Nischalke, H.D., Lutz, P., Krämer, B., Söhne, J., Müller, T., Rosendahl, J., et al. (2014) A Common Polymorphism in the NCAN Gene Is Associated with Hepatocellular Carcinoma in Alcoholic Liver Disease. Journal of Hepatology, 61, 1073-1079. https://doi.org/10.1016/j.jhep.2014.06.006
 | 
                     
                                
                                    
                                        | [30] | Zhong, X., Liu, Y., Liu, H., Zhang, Y., Wang, L. and Zhang, H. (2018) Identification of Potential Prognostic Genes for Neuroblastoma. Frontiers in Genetics, 9, Article 589. https://doi.org/10.3389/fgene.2018.00589
 | 
                     
                                
                                    
                                        | [31] | Tan, K., Wu, W., Zhu, K., Lu, L. and Lv, Z. (2022) Identification and Characterization of a Glucometabolic Prognostic Gene Signature in Neuroblastoma Based on N6-Methyladenosine Eraser ALKBH5. Journal of Cancer, 13, 2105-2125. https://doi.org/10.7150/jca.69408
 | 
                     
                                
                                    
                                        | [32] | Su, Y., Wang, L., Zhao, Q., Yue, Z., Zhao, W., Wang, X., et al. (2020) Im-plementation of the Plasma MYCN/NAGK Ratio to Detect MYCN Amplification in Patients with Neuroblastoma. Molecu-lar Oncology, 14, 2884-2893. https://doi.org/10.1002/1878-0261.12794
 | 
                     
                                
                                    
                                        | [33] | Shirai, R., Osumi, T., Sato-Otsubo, A., Nakabayashi, K., Ishiwata, K., Yamada, Y., et al. (2022) Quantitative Assessment of Copy Number Alterations by Liquid Biopsy for Neuroblastoma. Genes, Chromosomes and Cancer, 61, 662- 669. https://doi.org/10.1002/gcc.23073
 | 
                     
                                
                                    
                                        | [34] | Campbell, S., Mesaros, C., Izzo, L., Affronti, H., Noji, M., Schaffer, B.E., et al. (2021) Glutamine Deprivation Triggers NAGK-Dependent Hexosamine Salvage. Elife, 10, e62644. https://doi.org/10.7554/eLife.62644
 | 
                     
                                
                                    
                                        | [35] | Tang, H., Wei, P., Chang, P., Li, Y., Yan, D., Liu, C., et al. (2017) Genetic Polymorphisms Associated with Pancreatic Cancer Survival: A Genome-Wide Association Study. International Journal of Cancer, 141, 678-686. https://doi.org/10.1002/ijc.30762
 | 
                     
                                
                                    
                                        | [36] | Haque, M., Kendal, J.K., MacIsaac, R.M. and Demetrick, D.J. (2016) WSB1: From Homeostasis to Hypoxia. Journal of Biomedical Science, 23, Article No. 61. https://doi.org/10.1186/s12929-016-0270-3
 | 
                     
                                
                                    
                                        | [37] | Kim, J.J., Lee, S.B., Yi, S.Y., Han, S.A., Kim, S.H., Lee, J.M., et al. (2017) WSB1 Overcomes Oncogene-Induced Senescence by Targeting ATM for Degradation. Cell Research, 27, 274-293. https://doi.org/10.1038/cr.2016.148
 | 
                     
                                
                                    
                                        | [38] | Kim, J.J., Lee, S.B., Jang, J., Yi, S.Y., Kim, S.H., Han, S.A., et al. (2015) WSB1 Promotes Tumor Metastasis by Inducing pVHL Degradation. Genes & Development, 29, 2244-2257. https://doi.org/10.1101/gad.268128.115
 | 
                     
                                
                                    
                                        | [39] | Poujade, F.A., Mannion, A., Brittain, N., Theodosi, A., Beeby, E., Leszczynska, K.B., et al. (2018) WSB-1 Regulates the Metastatic Potential of Hormone Receptor Negative Breast Cancer. British Journal of Cancer, 118, 1229-1237. https://doi.org/10.1038/s41416-018-0056-3
 | 
                     
                                
                                    
                                        | [40] | Shichrur, K., Feinberg-Gorenshtein, G., Luria, D., Ash, S., Yaniv, I. and Avigad, S. (2014) Potential Role of WSB1 Isoforms in Growth and Survival of Neuroblastoma Cells. Pediatric Research, 75, 482-486. https://doi.org/10.1038/pr.2014.2
 | 
                     
                                
                                    
                                        | [41] | Chen, Q.R., Bilke, S., Wei, J.S., Greer, B.T., Steinberg, S.M., Westermann, F., et al. (2006) Increased WSB1 Copy Number Correlates with Its Over-Expression Which Associates with Increased Survival in Neuroblastoma. Genes, Chromosomes and Cancer, 45, 856-862. https://doi.org/10.1002/gcc.20349
 |