| [1] | Zhu, N., Welch, C.L., Wang, J., et al. (2018) Rare Variants in SOX17 Are Associated with Pulmonary Arterial Hyper-tension with Congenital Heart Disease. Genome Medicine, 10, Article No. 56. https://doi.org/10.1186/s13073-018-0566-x
 | 
                     
                                
                                    
                                        | [2] | Rosenzweig, E.B. and Krishnan, U. (2021) Congenital Heart Disease-Associated Pulmonary Hypertension. Clinics in Chest Medicine, 42, 9-18. https://doi.org/10.1016/j.ccm.2020.11.005
 | 
                     
                                
                                    
                                        | [3] | Brida, M. and Gatzoulis, M.A. (2018) Pulmonary Arterial Hyper-tension in Adult Congenital Heart Disease. Heart, 104, 1568-1574. https://doi.org/10.1136/heartjnl-2017-312106
 | 
                     
                                
                                    
                                        | [4] | Perez-Lescure, P.J., Mosquera, G.M., Latasa, Z.P., et al. (2018) Congenital Heart Disease Mortality in Spain during a 10 Year Period (2003-2012). Anales de Pediatría, 88, 273-279. https://doi.org/10.1016/j.anpede.2017.06.003
 | 
                     
                                
                                    
                                        | [5] | Zhu, N., Swietlik, E.M., Welch, C.L., et al. (2021) Rare Variant Analysis of 4241 Pulmonary Arterial Hypertension Cases from an International Consortium Implicates FBLN2, PDGFD, and Rare De Novo Variants in PAH. Genome Medicine, 13, Article No. 80. https://doi.org/10.1186/s13073-021-00891-1
 | 
                     
                                
                                    
                                        | [6] | Corada, M., Orsenigo, F., Morini, M.F., et al. (2013) Sox17 Is Indispensable for Acquisition and Maintenance of Arterial Identity. Nature Communications, 4, Article No. 2609. https://doi.org/10.1038/ncomms3609
 | 
                     
                                
                                    
                                        | [7] | Zhao, L., Jiang, W.F., Yang, C.X., et al. (2021) SOX17 Loss-of-Function Variation Underlying Familial Congenital Heart Disease. European Journal of Medical Genetics, 64, Article 104211. https://doi.org/10.1016/j.ejmg.2021.104211
 | 
                     
                                
                                    
                                        | [8] | Zhu, N., Pauciulo, M.W., Welch, C.L., et al. (2019) Novel Risk Genes and Mechanisms Implicated by Exome Sequencing of 2572 Individuals with Pulmonary Ar-terial Hypertension. Genome Medicine, 11, Article No. 69. https://doi.org/10.1186/s13073-019-0685-z
 | 
                     
                                
                                    
                                        | [9] | Hiraide, T., Kataoka, M., Suzuki, H., et al. (2018) SOX17 Muta-tions in Japanese Patients with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 198, 1231-1233. https://doi.org/10.1164/rccm.201804-0766LE
 | 
                     
                                
                                    
                                        | [10] | Welch, C.L. and Chung, W.K. (2020) Genetics and Other Omics in Pediatric Pulmonary Arterial Hypertension. Chest, 157, 1287-1295. https://doi.org/10.1016/j.chest.2020.01.013
 | 
                     
                                
                                    
                                        | [11] | Arora, R., Metzger, R.J. and Papaioannou, V.E. (2012) Multiple Roles and Interactions of Tbx4 and Tbx5 in Development of the Respiratory System. PLOS Genetics, 8, e1002866. https://doi.org/10.1371/journal.pgen.1002866
 | 
                     
                                
                                    
                                        | [12] | Welch, C.L. and Chung, W.K. (2020) Genetics and Genomics of Pediatric Pulmonary Arterial Hypertension. Genes, 11, Article 1213. https://doi.org/10.3390/genes11101213
 | 
                     
                                
                                    
                                        | [13] | Galambos, C., Mullen, M.P., Shieh, J.T., et al. (2019) Phenotype Characterisation of TBX4 Mutation and Deletion Carriers with Neonatal and Paediatric Pulmonary Hypertension. The European Respiratory Journal, 54, Article 1801965. https://doi.org/10.1183/13993003.01965-2018
 | 
                     
                                
                                    
                                        | [14] | Hernandez-Gonzalez, I., Tenorio, J., Palomino-Doza, J., et al. (2020) Clinical Heterogeneity of Pulmonary Arterial Hypertension Associated with Variants in TBX4. PLOS ONE, 15, e0232216. https://doi.org/10.1371/journal.pone.0232216
 | 
                     
                                
                                    
                                        | [15] | Abou, H.O.K., Haidar, W., Nemer, G., et al. (2018) Clinical and Genetic Characteristics of Pulmonary Arterial Hypertension in Lebanon. BMC Medical Genetics, 19, Article No. 89. https://doi.org/10.1186/s12881-018-0608-7
 | 
                     
                                
                                    
                                        | [16] | Morrell, N.W., Aldred, M.A., Chung, W.K., et al. (2019) Genetics and Genomics of Pulmonary Arterial Hypertension. The European Respiratory Journal, 53, Article 1801899. https://doi.org/10.1183/13993003.01899-2018
 | 
                     
                                
                                    
                                        | [17] | Bajolle, F., Malekzadeh-Milani, S., Levy, M., et al. (2021) Multifactorial Origin of Pulmonary Hypertension in a Child with Congenital Heart Disease, Down Syndrome, and BMPR-2 Mutation. Pulmonary Circulation, 11, 1-3. https://doi.org/10.1177/20458940211027433
 | 
                     
                                
                                    
                                        | [18] | Du, M., Jiang, H., Liu, H., et al. (2021) Single-Cell RNA Se-quencing Reveals that BMPR2 Mutation Regulates Right Ventricular Function via ID Genes. European Respiratory Journal, 60, Article 2100327. https://doi.org/10.1183/13993003.00327-2021
 | 
                     
                                
                                    
                                        | [19] | Chen, M.H., Walsh, C.A. (1993) Flna Deficiency. Adam, M.P., Ardinger, H.H., Pagon, R.A., et al. GeneReviews ((R)). Seattle (WA). | 
                     
                                
                                    
                                        | [20] | Deng, X., Li, S., Qiu, Q., et al. (2020) Where the Congenital Heart Disease Meets the Pulmonary Arterial Hypertension, FLNA Matters: A Case Report and Literature Review. BMC Pediatrics, 20, Article No. 504. https://doi.org/10.1186/s12887-020-02393-2
 | 
                     
                                
                                    
                                        | [21] | Burrage, L.C., Guillerman, R.P., Das, S., et al. (2017) Lung Transplantation for FLNA-Associated Progressive Lung Disease. The Journal of Pediatrics, 186, 118-123. https://doi.org/10.1016/j.jpeds.2017.03.045
 | 
                     
                                
                                    
                                        | [22] | Mori, S., Tanoue, K., Shimizu, H., et al. (2021) Lung Disease due to FLNA Mutation Improved after Shunt Closure for Congenital Heart Disease. Pediatric Pulmonology, 56, 1280-1282. https://doi.org/10.1002/ppul.25269
 | 
                     
                                
                                    
                                        | [23] | Li, J., Yang, S., Pu, Z., et al. (2017) Whole-Exome Sequencing Identifies SGCD and ACVRL1 Mutations Associated with Total Anomalous Pulmonary Venous Return (TAPVR) in Chinese Population. Oncotarget, 8, 27812-27819. https://doi.org/10.18632/oncotarget.15434
 | 
                     
                                
                                    
                                        | [24] | Wu, B., Li, J., Wang, Y., et al. (2021) Recurrent Germline Muta-tions as Genetic Markers for Aortic Root Dilatation in Bicuspid Aortic Valve Patients. Heart and Vessels, 36, 530-540. https://doi.org/10.1007/s00380-020-01710-0
 | 
                     
                                
                                    
                                        | [25] | Haarman, M.G., Kerstjens-Frederikse, W.S., Vissia-Kazemier, T.R., et al. (2020) The Genetic Epidemiology of Pediatric Pulmonary Arterial Hypertension. The Journal of Pediatrics, 225, 65-73. https://doi.org/10.1016/j.jpeds.2020.05.051
 | 
                     
                                
                                    
                                        | [26] | Gelinas, S.M., Benson, C.E., Khan, M.A., et al. (2020) Whole Exome Sequence Analysis Provides Novel Insights into the Genetic Framework of Childhood-Onset Pulmonary Arterial Hypertension. Genes, 11, Article 1328. https://doi.org/10.3390/genes11111328
 | 
                     
                                
                                    
                                        | [27] | Bush, D., Galambos, C. and Dunbar, I.D. (2021) Pulmonary Hyper-tension in Children with Down Syndrome. Pediatric Pulmonology, 56, 621-629. https://doi.org/10.1002/ppul.24687
 | 
                     
                                
                                    
                                        | [28] | Espinola-Zavaleta, N., Soto, M.E., Romero-Gonzalez, A., et al. (2015) Prevalence of Congenital Heart Disease and Pulmonary Hypertension in Down’s Syndrome: An Echocardiographic Study. Cardiovascular Ultrasound, 23, 72-77. https://doi.org/10.4250/jcu.2015.23.2.72
 | 
                     
                                
                                    
                                        | [29] | Masaki, N., Saiki, Y., Endo, M., et al. (2018) Is Trisomy 21 a Risk Factor for Rapid Progression of Pulmonary Arteriopathy?—Revisiting Histopathological Characteristics Using 282 Lung Biopsy Specimens. Circulation Journal, 82, 1682-1687. https://doi.org/10.1253/circj.CJ-17-0754
 | 
                     
                                
                                    
                                        | [30] | Yu, X., Zhang, Y., Luo, Q., et al. (2018) Iron Deficiency in Pulmonary Arterial Hypertension Associated with Congenital Heart Disease. Scandinavian Cardiovascular Journal, 52, 378-382. https://doi.org/10.1080/14017431.2019.1567934
 | 
                     
                                
                                    
                                        | [31] | Yang, J., Kang, Y., Cheng, Y., et al. (2020) Iron Intake and Iron Status during Pregnancy and Risk of Congenital Heart Defects: A Case-Control Study. International Journal of Cardiology, 301, 74-79. https://doi.org/10.1016/j.ijcard.2019.11.115
 | 
                     
                                
                                    
                                        | [32] | Low, A., George, S., Howard, L., et al. (2018) Lung Function, Inflammation, and Endothelin-1 in Congenital Heart Disease-Associated Pulmonary Arterial Hypertension. Journal of the American Heart Association, 7, e007249 https://doi.org/10.1161/JAHA.117.007249
 | 
                     
                                
                                    
                                        | [33] | 郑杨, 杨爱君. 新生儿重症肺炎合并先天性心脏病、肺动脉高压临床分析[J]. 中国医刊, 2015, 50(11): 20-22. | 
                     
                                
                                    
                                        | [34] | Fischer-Betz, R. and Specker, C. (2017) Pregnancy in Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Best Practice & Research Clinical Rheumatology, 31, 397-414. https://doi.org/10.1016/j.berh.2017.09.011
 | 
                     
                                
                                    
                                        | [35] | Liu, J., Zhao, Y., Song, Y., et al. (2012) Pregnancy in Women with Systemic Lupus Erythematosus: A Retrospective Study of 111 Pregnancies in Chinese Women. The Journal of Maternal-Fetal & Neonatal Medicine, 25, 261-266. https://doi.org/10.3109/14767058.2011.572310
 | 
                     
                                
                                    
                                        | [36] | Maltret, A., Morel, N., Levy, M., et al. (2021) Pulmonary Hypertension Associated with Congenital Heart Block and Neonatal Lupus Syndrome: A Series of Four Cases. Lupus, 30, 307-314. https://doi.org/10.1177/0961203320973073
 | 
                     
                                
                                    
                                        | [37] | Lassi, Z.S., Imam, A.M., Dean, S.V., et al. (2014) Preconception Care: Caffeine, Smoking, Alcohol, Drugs and Other Environmental Chemical/Radiation Exposure. Reproductive Health, 11, Article No. S6. https://doi.org/10.1186/1742-4755-11-S3-S6
 | 
                     
                                
                                    
                                        | [38] | Baldacci, S., Gorini, F., Santoro, M., et al. (2018) Environmental and Individual Exposure and the Risk of Congenital Anomalies: A Review of Recent Epidemiological Evidence. Epidemiologia & Prevenzione, 42, 1-34. | 
                     
                                
                                    
                                        | [39] | Chen, Z., Li, S., Guo, L., et al. (2021) Prenatal Alcohol Exposure Induced Congenital Heart Diseases: From Bench to Bedside. Birth Defects Research, 113, 521-534. https://doi.org/10.1002/bdr2.1743
 | 
                     
                                
                                    
                                        | [40] | Li, X., Gao, A., Wang, Y., et al. (2016) Alcohol Exposure Leads to Un-recoverable Cardiovascular Defects Along with Edema and Motor Function Changes in Developing Zebrafish Larvae. Biology Open, 5, 1128-1133. https://doi.org/10.1242/bio.019497
 | 
                     
                                
                                    
                                        | [41] | 常琦, 任明山, 吴元波. 抗癫痫药物的致畸作用[J]. 中国神经免疫学和神经病学杂志, 2016, 23(1): 55-58. | 
                     
                                
                                    
                                        | [42] | De Vries, C., Gadzhanova, S., Sykes, M.J., et al. (2021) A Systematic Re-view and Meta-Analysis Considering the Risk for Congenital Heart Defects of Antidepressant Classes and Individual Antidepressants. Drug Safety, 44, 291-312. https://doi.org/10.1007/s40264-020-01027-x
 | 
                     
                                
                                    
                                        | [43] | Huybrechts, K.F., Hernandez-Diaz, S., Patorno, E., et al. (2016) Antipsychotic Use in Pregnancy and the Risk for Congenital Malformations. JAMA Psychiatry, 73, 938-946. https://doi.org/10.1001/jamapsychiatry.2016.1520
 | 
                     
                                
                                    
                                        | [44] | Padula, A.M., Yang, W., Schultz, K., et al. (2021) Gene-Environment Interactions between Air Pollution and Biotransformation Enzymes and Risk of Birth Defects. Birth Defects Research, 113, 676-686. https://doi.org/10.1002/bdr2.1880
 | 
                     
                                
                                    
                                        | [45] | Dadvand, P., Rankin, J., Rushton, S., et al. (2011) Ambient Air Pollution and Congenital Heart Disease: A Register-Based Study. Environmental Research, 111, 435-441. https://doi.org/10.1016/j.envres.2011.01.022
 | 
                     
                                
                                    
                                        | [46] | Liu, C.B., Hong, X.R., Shi, M., et al. (2017) Effects of Prenatal PM10 Exposure on Fetal Cardiovascular Malformations in Fuzhou, China: A Retrospective Case-Control Study. Environmental Health Perspectives, 125, Article 057001. https://doi.org/10.1289/EHP289
 | 
                     
                                
                                    
                                        | [47] | 祁生贵, 祁国荣, 陈秋红, 等. 藏族先天性心脏病合并肺动脉高压影响因素分析[J]. 中国公共卫生, 2012, 28(4): 466-468. | 
                     
                                
                                    
                                        | [48] | 陈秋红, 路霖, 祁国荣, 等. 高原地区先天性心脏病并发肺动脉高压的调查分析[J]. 中华医学杂志, 2011, 91(44): 3120-3122. | 
                     
                                
                                    
                                        | [49] | Goldstein, S.A. and Krasuski, R.A. (2022) Pulmonary Hypertension in Adults with Congenital Heart Disease. Cardiology Clinics, 40, 55-67. https://doi.org/10.1016/j.ccl.2021.08.006
 |