|
[1]
|
彭金奎. 钬激光碎石术与体外冲击波碎石术治疗输尿管结石的效果比较[J]. 中国继续医学教育, 2021, 13(14): 140-143.
|
|
[2]
|
高景宇, 王兴存, 徐学军, 等. 输尿管软镜钬激光碎石术与体外冲击波碎石术治疗输尿管结石疗效比较[J]. 现代中西医结合杂志, 2020, 29(19): 2098-2102.
|
|
[3]
|
郭吉军, 熊大波. 影响输尿管结石患者体外冲击波碎石术疗效的因素分析[J]. 临床医学研究与实践, 2022, 7(20): 50-53.
|
|
[4]
|
刘磊, 王阳, 胡跃世, 等. 早期体外冲击波碎石术治疗输尿管结石的疗效及影响因素分析[J]. 中国临床医生杂志, 2021, 49(5): 581-584.
|
|
[5]
|
曾新红, 苏永祥, 刘左成, 等. 泌尿系结石体外冲击波碎石术影响因素分析[J]. 深圳中西医结合杂志, 2018, 28(15): 108-110.
|
|
[6]
|
Park, H.S., Gong, M.K., Yoon, C.Y., et al. (2016) Computed Tomography-Based Novel Prediction Model for the Outcome of Shockwave Lithotripsy in Proximal Ureteral Stones. Journal of Endourology, 30, 810-816. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Müllhaupt, G., Engeler, D.S., Schmid, H.P., et al. (2015) How Do Stone Attenuation and Skin-to-Stone Distance in Computed Tomography Influence the Performance of Shock Wave Lithotripsy in Ureteral Stone Disease? BMC Urology, 15, 72. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yuri, P., Hariwibowo, R., Soeroharjo, I., et al. (2018) Me-ta-Analysis of Optimal Management of Lower Pole Stone of 10-20 mm: Flexible Ureteroscopy (FURS) versus Extra-corporeal Shock Wave Lithotripsy (ESWL) versus Percutaneus Nephrolithotomy (PCNL). Acta Medica Indonesiana, 50, 18-25.
|
|
[9]
|
Pearle, M.S., Lingeman, J.E., Leveillee, R., et al. (2008) Prospective Randomized Trial Comparing Shock Wave Lithotripsy and Ureteroscopy for Lower Pole Caliceal Calculi 1 cm or Less. Journal of Urology, 179, S69-S73. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hughes, T., Ho, H.C., Pietropaolo, A., et al. (2020) Guideline of Guidelines for Kidney and Bladder Stones. Turkish Journal of Urology, 46, S104-s112. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Keskin, S.K., Spencer, M., Lovegrove, C., et al. (2022) The New Lithotripsy Index Predicts Success of Shock Wave Lithotripsy. World Journal of Urology, 40, 3049-3053. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yoshioka, T., Ikenoue, T., Hashimoto, H., et al. (2020) Devel-opment and Validation of a Prediction Model for Failed Shockwave Lithotripsy of Upper Urinary Tract Calculi Using Computed Tomography Information: The S(3)HoCKwave Score. World Journal of Urology, 38, 3267-3273. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Xun, Y., Li, J., Geng, Y., et al. (2018) Single Extracorporeal Shock-Wave Lithotripsy for Proximal Ureter Stones: Can CT Texture Analysis Technique Help Predict the Therapeutic Effect? European Journal of Radiology, 107, 84-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ouzaid, I., Al-Qahtani, S., Dominique, S., et al. (2012) A 970 Hounsfield Units (HU) Threshold of Kidney Stone Density on Non-Contrast Computed Tomography (NCCT) Improves Patients’ Selection for Extracorporeal Shockwave Lithotripsy (ESWL): Evidence from a Prospective Study. BJU International, 110, E438-E442. [Google Scholar] [CrossRef]
|
|
[15]
|
Gupta, N.P., Ansari, M.S., Kesarvani, P., et al. (2005) Role of Computed Tomography with No Contrast Medium Enhancement in Predicting the Outcome of Extracorporeal Shock Wave Lithotripsy for Urinary Calculi. BJU International, 95, 1285-1288. [Google Scholar] [CrossRef]
|
|
[16]
|
Jiang, P., Xie, L., Arada, R., et al. (2021) Qualitative Re-view of Clinical Guidelines for Medical and Surgical Management of Urolithiasis: Consensus and Controversy 2020. Journal of Urology, 205, 999-1008. [Google Scholar] [CrossRef]
|
|
[17]
|
Yamashita, S., Kohjimoto, Y., Iguchi, T., et al. (2017) Varia-tion Coefficient of Stone Density: A Novel Predictor of the Outcome of Extracorporeal Shockwave Lithotripsy. Journal of Endourology, 31, 384-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yilmaz, E., Batislam, E., Basar, M., et al. (2005) Optimal Frequency in Extracorporeal Shock Wave Lithotripsy: Prospective Randomized Study. Urology, 66, 1160-1164. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kang, D.H., Cho, K.S., Ham, W.S., et al. (2016) Comparison of High, Intermediate, and Low Frequency Shock Wave Lithotripsy for Urinary Tract Stone Disease: Systematic Review and Network Meta-Analysis. PLOS ONE, 11, e0158661. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
陈军, 陈兴发, 谷现恩, 等. 体外冲击波碎石治疗上尿路结石安全共识[J]. 现代泌尿外科杂志, 2018, 23(8): 574-579.
|
|
[21]
|
López-Acón, J.D., Budía Alba, A., Bahílo-Mateu, P., et al. (2017) Analysis of the Efficacy and Safety of Increasing the Energy Dose Applied Per Session by Increasing the Number of Shock Waves in Extracorporeal Lithotripsy: A Prospective and Comparative Study. Journal of Endourology, 31, 1289-1294. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Türk, C., Petřík, A., Sarica, K., et al. (2016) EAU Guidelines on Interventional Treatment for Urolithiasis. European Urology, 69, 475-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Pishchalnikov, Y.A., Neucks, J.S., Vonderhaar, R.J., et al. (2006) Air Pockets Trapped during Routine Coupling in Dry Head Lithotripsy Can Significantly Decrease the Delivery of Shock Wave Energy. Journal of Urology, 176, 2706- 2710. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, G., Williams, J.C., Pishchalnikov, Y.A., et al. (2012) Size and Location of Defects at the Coupling Interface Affect Lithotripter Performance. BJU International, 110, E871-E877. [Google Scholar] [CrossRef]
|
|
[25]
|
Cartledge, J.J., Cross, W.R., Lloyd, S.N., et al. (2001) The Efficacy of a Range of Contact Media as Coupling Agents in Extracorporeal Shockwave Lithotripsy. BJU International, 88, 321-324. [Google Scholar] [CrossRef]
|
|
[26]
|
Tiselius, H.G. (2008) How Efficient Is Extracorporeal Shockwave Lithotripsy with Modern Lithotripters for Removal of Ureteral Stones? Journal of Endourology, 22, 249-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Choo, M.S., Han, J.H., Kim, J.K., et al. (2018) The Transgluteal Approach to Shockwave Lithotripsy to Treat Distal Ureter Stones: A Prospective, Randomized, and Mul-ticenter Study. World Journal of Urology, 36, 1299-1306. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Phipps, S., Stephenson, C. and Tolley, D. (2013) Extracorporeal Shockwave Lithotripsy to Distal Ureteric Stones: The Transgluteal Approach Significantly Increases Stone-Free Rates. BJU International, 112, E129-E133. [Google Scholar] [CrossRef]
|
|
[29]
|
Karlin, G., Marino, C., Badlani, G., et al. (1990) Benefits of an Ultrasound-Guided ESWL Unit. Archivos Espanoles de Urologia, 43, 579-581.
|
|
[30]
|
Van Besien, J., Uvin, P., Hermie, I., et al. (2017) Ultrasonography Is Not Inferior to Fluoroscopy to Guide Extracorporeal Shock Waves during Treatment of Renal and Upper Ureteric Calculi: A Randomized Prospective Study. BioMed Research International, 2017, Article ID: 7802672. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Smith, H.E., Bryant, D.A., Koong, J., et al. (2016) Extracorporeal Shockwave Lithotripsy without Radiation: Ultrasound Localization Is as Effective As Fluor-oscopy. Urology Annals, 8, 454-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Shah, A., Owen, N.R., Lu, W., et al. (2010) Novel Ultrasound Method to Reposition Kidney Stones. Urological Research, 38, 491-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Harper, J.D., Sorensen, M.D., Cunitz, B.W., et al. (2013) Fo-cused Ultrasound to Expel Calculi from the Kidney: Safety and Efficacy of a Clinical Prototype Device. Journal of Urology, 190, 1090-1095. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Harper, J.D., Cunitz, B.W., Dunmire, B., et al. (2016) First in Human Clinical Trial of Ultrasonic Propulsion of Kidney Stones. Journal of Urology, 195, 956-964. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Maxwell, A.D., Cunitz, B.W., Kreider, W., et al. (2015) Frag-mentation of Urinary Calculi in Vitro by Burst Wave Lithotripsy. Journal of Urology, 193, 338-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ramesh, S., Chen, T.T., Maxwell, A.D., et al. (2020) In Vitro Evaluation of Urinary Stone Comminution with a Clinical Burst Wave Lithotripsy System. Journal of Endourology, 34, 1167-1173. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Randad, A., Ghanem, M.A., Bailey, M.R., et al. (2020) Design, Fabrication, and Characterization of Broad Beam Transducers for Fragmenting Large Renal Calculi with Burst Wave Lithotripsy. The Journal of the Acoustical Society of America, 148, 44. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Maxwell, A.D., Wang, Y.N., Kreider, W., et al. (2019) Evaluation of Renal Stone Comminution and Injury by Burst Wave Lithotripsy in a Pig Model. Journal of Endourology, 33, 787-792. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Bailey, M.R., Wang, Y.N., Kreider, W., et al. (2018) Update on Clinical Trials of Kidney Stone Repositioning and Preclinical Results of Stone Breaking with One System. Proceedings of Meetings on Acoustics, 35, Article ID: 020004. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
May, P.C., Kreider, W., Maxwell, A.D., et al. (2017) Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging. Journal of Endourology, 31, 786-792. [Google Scholar] [CrossRef] [PubMed]
|