学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
应用数学进展
Vol. 12 No. 4 (April 2023)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
乘积图的博弈染色数
The Game Coloring Number of Product Graph
DOI:
10.12677/AAM.2023.124156
,
PDF
,
HTML
,
,
被引量
作者:
苏俊义
:浙江师范大学数学科学学院,浙江 金华
关键词:
笛卡尔积图
;
直积图
;
强积图
;
博弈染色数
;
The Cartesian Product of Graphs
;
The Direct Product of Graphs
;
The Strong Product of Graphs
;
Game Coloring Number
摘要:
本文讨论的图是两棵树的乘积图. 分别研究了树和树的笛卡尔积图、直积图和强积图的 (a, 1)-博弈染色数, 给出了三种乘积图的 (a, 1)-博弈染色的上界. 特殊地, 如果其中一棵树是一条路, 那么我们类似的可以得出关于树和路的乘积图的 (a, 1)-博弈染色数的结果.
Abstract:
The graph discussed in this article is a product graph of two trees. We study the (a, 1)-game coloring numbers of the Cartesian product graph, direct product graph and strong product graphs of two trees, and give the upper bounds of (a, 1)-game coloring numbers of the three product graphs. In particular, if one of the trees is a path, then we can similarly obtain the results of the (a, 1)-game coloring number of the product graph of tree and path.
文章引用:
苏俊义. 乘积图的博弈染色数[J]. 应用数学进展, 2023, 12(4): 1504-1509.
https://doi.org/10.12677/AAM.2023.124156
参考文献
[1]
Bodlaender, H.L. (1991) On the Complexity of Some Coloring Games. In: M¨ohring, R.H., Ed., Graph-Theoretic Concepts in Computer Science. WG 1990. Lecture Notes in Computer Science, Vol. 484, Springer, Berlin, 30-40.
https://doi.org/10.1007/3-540-53832-1 29
[2]
Faigle, U., Kern, U., Kierstead, H. and Trotter, W.T. (1993) On the Game Chromatic Number of Some Classes of Graphs. Ars Combinatoria, 35, 143-150.
[3]
Zhu, X. (1999) The Game Coloring Number of Planar Graphs. Journal of Combinatorial Theory, Series B, 75, 245-258.
https://doi.org/10.1006/jctb.1998.1878
[4]
Kierstead, H.A. (2005) Asymmetric Graph Coloring Games. Journal of Graph Theory, 48, 169-185.
https://doi.org/10.1002/jgt.20049
[5]
Kierstead, H.A. and Yang, D. (2005) Very Asymmetric Marking Games. Order, 22, 93-107.
https://doi.org/10.1007/s11083-005-9012-y
[6]
刘佳丽. 树和路的乘积图的广义染色数及博弈染色数[J]. 应用数学进展, 2022, 11(1): 318-325.
https://doi.org/10.12677/AAM.2022.111039
投稿
为你推荐
友情链接
科研出版社
开放图书馆