|
[1]
|
Berg, T. and Jonsson, L. (2013) Peripheral Neuropathies: Corticosteroids and Antivirals in Bell Palsy. Nature Reviews Neurology, 9, 128-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tiemstra, J.D. and Khatkhate, N. (2007) Bell’s Palsy: Diagnosis and Management. American Family Physician, 76, 997-1002.
|
|
[3]
|
Gilden, D.H. (2006) Bell’s Palsy. Current Therapy in Neurologic Disease, 85, 207-208. [Google Scholar] [CrossRef]
|
|
[4]
|
Morris, A.M., Deeks, S.L., Hill, M.D., et al. (2002) Annualized Incidence and Spectrum of Illness from an Outbreak Investigation of Bell’s Palsy. Neuroepidemiology, 21, 255-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, W., Xu, L., Luo, T., et al. (2020) The Etiology of Bell’s Palsy: A Review. Journal of Neurology, 267, 1896-1905. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Mutsch, M., Zhou, W., Rhodes, P., et al. (2004) Use of the Inac-tivated Intranasal Influenza Vaccine and the Risk of Bell’s Palsy in Switzerland. New England Journal of Medicine, 350, 896-903. [Google Scholar] [CrossRef]
|
|
[7]
|
Stratton, K., Ford, A., Rusch, E., et al. (2012) Adverse Ef-fects of Vaccines: Evidence and Causality. National Academies Press, Washington DC.
|
|
[8]
|
Zhou, W., Pool, V., Deste-fano, F., et al. (2010) A Potential Signal of Bell’s Palsy after Parenteral Inactivated Influenza Vaccines: Reports to the Vaccine Adverse Event Reporting System (VAERS)—United States, 1991-2001. Pharmacoepidemiology & Drug Safety, 13, 505-510. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Cirillo, N. and Doan, R. (2022) The Association between COVID-19 Vaccination and Bell’s Palsy. The Lancet Infectious Diseases, 22, 5-6. [Google Scholar] [CrossRef]
|
|
[10]
|
Castillo, R.A. and Castrillo, J. (2022) Neurological Manifes-tations Associated with COVID-19 Vaccine. Neurologia.
|
|
[11]
|
Gupta, S. and Jawanda, M. (2022) Surge of Bell’s Palsy in the Era of COVID-19: Systematic Review. European Journal of Neurology, 29, 2526-2543. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, Y., Liu, Q. and Guo, D. (2020) Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis. Journal of Medical Virology, 92, 418-423. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dong, Y., Dai, T., Wei, Y., et al. (2020) A Systematic Review of SARS-CoV-2 Vaccine Candidates. Transduction and Targeted Therapy, 5, 237. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cantoni, D. and Grove, J. (2023) Low Hanging Fruit for Com-batting SARS-CoV-2? EMBO Reports, 24, e56979. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gao, Q., Bao, L., Mao, H., et al. (2020) Development of an Inacti-vated Vaccine Candidate for SARS-CoV-2. Science, 369, 77-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Khare, S., Niharika, S.A., et al. (2023) SARS-CoV-2 Vaccines: Types, Working Principle, and Its Impact on Thrombosis and Gastrointestinal Disorders. Applied Biochemistry and Bio-technology, 195, 1541-1573. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Khoshnood, S., Arshadi, M., Akrami, S., et al. (2022) An Over-view on Inactivated and Live-Attenuated SARS-CoV-2 Vaccines. Journal of Clinical Laboratory Analysis, 36, e24418. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Krammer, F. (2020) SARS-CoV-2 Vaccines in Development. Nature, 586, 516-527. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Delrue, I., et al. (2012) Inactivated Virus Vaccines from Chemis-try to Prophylaxis: Merits, Risks and Challenges. Expert Review of Vaccines, 11, 695-719. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
邓涛, 年悬悬, 张家友, 等. 新型冠状病毒灭活疫苗研发及应用[J]. 中国生物制品学杂志, 2021, 34(7): 761-769.
|
|
[21]
|
Adesokan, A., Obeid, M. and Lawal, A.F. (2022) SARS-CoV-2: Vac-cinology and Emerging Therapeutics; Challenges and Future Developments. Therapeutic Delivery, 13, 187-203. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sakurai, F., Tachibana, M. and Mizuguchi, H. (2022) Adenovirus Vector-Based Vaccine for Infectious Diseases. Drug Metabolism and Pharmacokinetics, 42, Article ID: 100432. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
崔晓峰, 孙志华, 刘俊, 等. 腺病毒载体疫苗研究进展[J]. 中国病毒病杂志, 2022, 12(6): 468-473.
|
|
[24]
|
Logunov, D.Y., Dolzhikova, I.V., Zubkova, O.V., et al. (2021) Safety and Immunogenicity of an rAd26 and rAd5 Vector-Based Heterologous Prime-Boost COVID-19 Vaccine in Two Formula-tions: Two Open, Non-Randomised Phase 1/2 Studies from Russia. The Lancet, 396, 887-897.
|
|
[25]
|
张旋旋, 佘广彪, 刘晓雅, 等. 新冠病毒蛋白亚单位疫苗研究进展[J]. 中国医药导刊, 2022, 24(5): 434-438.
|
|
[26]
|
Nielsen, K.H. (2014) Protein Expression-Yeast. Methods in Enzymology, 536, 133-147. [Google Scholar] [CrossRef]
|
|
[27]
|
Merlin, M., Gecchele, E., Capalid, S., et al. (2014) Comparative Evaluation of Recombinant Protein Production in Different Biofactories: The Green Perspective. BioMed Research International, 2014, Article ID: 136419. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Pollet, J., Chen, W.H. and Strych, U. (2021) Recombinant Protein Vac-cines, a Proven Approach against Coronavirus Pandemics. Advanced Drug Delivery Reviews, 170, 71-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, N.N., Li, X.F., Deng, Y.Q., et al. (2020) A Thermostable mRNA Vaccine against COVID-19. Cell, 182, 1271-1283. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chaudhary, N., Weissman, D. and Whitehead, K. (2021) mRNA Vaccines for Infectious Diseases: Principles, Delivery and Clinical Translation. Nature Reviews Drug Discovery, 20, 817-838. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Vitiello, A. and Ferrara, F. (2021) Brief Review of the mRNA Vaccines COVID-19. Inflammopharmacology, 29, 645-649. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Locht, C. (2020) Vaccines against COVID-19. Anaesthesia Critical Care & Pain Medicine, 39, 703-705. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Principi, N. and Esposito, S. (2020) Do Vaccines Have a Role as a Cause of Autoimmune Neurological Syndromes? Frontiers in Public Health, 8, Article No. 361. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wan, E.Y.F., Chui, C.S.L., Lai, F., et al. (2022) Bell’s Palsy Fol-lowing Vaccination with mRNA (BNT162b2) and Inactivated (CoronaVac) SARS-CoV-2 Vaccines: A Case Series and Nested Case-Control Study. The Lancet Infectious Diseases, 22, 64-72. [Google Scholar] [CrossRef]
|
|
[35]
|
Wong, C., Lau, K., Xiong, X., et al. (2022) Adverse Events of Special Interest and Mortality Following Vaccination with mRNA (BNT162b2) and Inactivated (CoronaVac) SARS-CoV-2 Vaccines in Hong Kong: A Retrospective Study. PLOS Medicine, 19, e1004018. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Patone, M., Handunnetthi, L., Saatci, D., et al. (2021) Neuro-logical Complications after First Dose of COVID-19 Vaccines and SARS-CoV-2 Infection. Nature Medicine, 27, 2144-2153. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Khurshid, M., Ansari, I., Ahmad, H., et al. (2022) Development of Facial Palsy Following COVID-19 Vaccination: A Systematic Review. Annals of Medicine and Surgery (London), 82, Article ID: 104758. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Goepfert, P.A., Fu, B., Chabanon, A.L., et al. (2021) Safety and Immunogenicity of SARS-CoV-2 Recombinant Protein Vaccine Formulations in Healthy Adults: Interim Results of a Randomised, Placebo-Controlled, Phase 1-2, Dose-Ranging Study. The Lancet Infectious Diseases, 21, 1257-1270. [Google Scholar] [CrossRef]
|
|
[39]
|
Heath, P.T., Galiza, E.P., Baxter, D.N., et al. (2021) Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. The New England Journal of Medicine, 385, 1172-1183. [Google Scholar] [CrossRef]
|
|
[40]
|
Kaabi, N.A., Yang, Y.K., Zhang, J., et al. (2022) Immunogenicity and Safety of NVSI-06-07 as a Heterologous Booster after Priming with BBIBP-CorV: A Phase 2 Trial. Signal Trans-duction and Targeted Therapy, 7, 172. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Hwang, I., Calvit, T.B., Cash, B.D., et al. (2004) Bell’s Palsy: A Rare Complication of Interferon Therapy for Hepatitis C. Digestive Diseases & Sciences, 97, S207-S208. [Google Scholar] [CrossRef]
|
|
[42]
|
Ozonoff, A., Nanishi, E. and Levy, O. (2021) Bell’s Palsy and SARS-CoV-2 Vaccines. The Lancet Infectious Diseases, 21, 450-452. [Google Scholar] [CrossRef]
|
|
[43]
|
Cirillo, N. and Doan, R. (2021) Bell’s Palsy and SARS-CoV-2 Vaccines—An Unfolding Story. The Lancet Infectious Diseases, 21, 1210-1211. [Google Scholar] [CrossRef]
|
|
[44]
|
Ozonoff, A., Nanishi, E. and Levy, O. (2021) Bell’s Palsy and SARS-CoV-2 Vaccines—An Unfolding Story—Authors’ Reply. The Lancet Infectious Diseases, 21, 1211-1212. [Google Scholar] [CrossRef]
|
|
[45]
|
Wan, E., Chui, C., Mok, A., et al. (2022) mRNA (BNT162b2) and Inactivated (CoronaVac) COVID-19 Vaccination and Risk of Adverse Events and Acute Diabetic Complications in Patients with Type 2 Diabetes Mellitus: A Population-Based Study. Drug Safety, 45, 1477-1490. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Matveeva, O., Nechipurenko, Y., Lagutkin, D., et al. (2022) SARS-CoV-2 Infection of Phagocytic Immune Cells and COVID-19 Pathology: Antibody-Dependent as Well as Inde-pendent Cell Entry. Frontiers in Immunology, 13, Article ID: 1050478. [Google Scholar] [CrossRef] [PubMed]
|