|
[1]
|
Liu, C.-J., Xue, B., Eliasson, B., et al. (2001) Methane Conversion to Higher Hydrocarbons in the Presence of Carbon Dioxide Using Dielectric-Barrier Discharge Plasmas. Plasma Chemistry and Plasma Processing, 21, 301-310. [Google Scholar] [CrossRef]
|
|
[2]
|
Zhang, Y.-P., Li, Y., Wang, Y., Liu, C.-J. and Eliasson, B. (2003) Plasma Methane Conversion in the Presence of Carbon Dioxide Using Dielectric-Barrier Discharges. Fuel Processing Technology, 83, 101-109. [Google Scholar] [CrossRef]
|
|
[3]
|
Dissanayake, D., Rosynek, M.P., Kharas, K.C.C. and Luns-ford, J.H. (1991) Partial Oxidation of Methane to Carbon Monoxide and Hydrogen over a Ni/Al2O3 Catalyst. Journal of Catalysis, 132, 117-127. [Google Scholar] [CrossRef]
|
|
[4]
|
Horn, R. and Schlögl, R. (2015) Methane Activation by Het-erogeneous Catalysis. Catalysis Letters, 145, 23-39. [Google Scholar] [CrossRef]
|
|
[5]
|
Voge, H.H. (1936) Relation of the States of the Carbon Atom to Its Valence in Methane. The Journal of Chemical Physics, 4, 581-591. [Google Scholar] [CrossRef]
|
|
[6]
|
Wang, M., Tan, X., Motuzas, J., Li, J. and Liu, S. (2021) Hydrogen Pro-duction by Methane Steam Reforming Using Metallic Nickel Hollow Fiber Membranes. Journal of Membrane Science, 620, Article ID: 118909. [Google Scholar] [CrossRef]
|
|
[7]
|
Angeli, S.D., Monteleone, G., Giaconia, A. and Lemonidou, A.A. (2014) State-of-the-Art Catalysts for CH4 Steam Reforming at Low Temperature. International Journal of Hydro-gen Energy, 39, 1979-1997. [Google Scholar] [CrossRef]
|
|
[8]
|
Brown, M.J. and Parkyns, N.D. (1991) Progress in the Partial Oxidation of Methane to Methanol and Formaldehyde. Catalysis Today, 8, 305-335. [Google Scholar] [CrossRef]
|
|
[9]
|
O’Reilly, M.E., Kim, R.S., Oh, S., et al. (2017) Electrochemi-cal Reoxidation Enables Continuous Methane-to-Methanol Catalysis with Aqueous Pt Salts. ACS Central Science, 3, 1174-1179.
|
|
[10]
|
Gunsalus, N.J., Koppaka, A., Park, S.H., et al. (2017) Homogeneous Functionalization of Methane. Chemical Reviews, 117, 8521-8573. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Cavaliere, V.N. and Mindi-ola, D.J. (2012) Methane: A New Frontier in Organometallic Chemistry. Chemical Science, 3, 3356-3365. [Google Scholar] [CrossRef]
|
|
[12]
|
Duan, Z. and Mao, S. (2006) A Thermodynamic Model for Calculating Methane Solubility, Density and Gas Phase Composition of Methane-Bearing Aqueous Fluids from 273 to 523 K and from 1 to 2000 Bar. Geochimica et Cosmochimica Acta, 70, 3369-3386. [Google Scholar] [CrossRef]
|
|
[13]
|
Liang, Z., Li, T., Kim, M., Asthagiri, A. and Weaver, J.F. (2017) Low-Temperature Activation of Methane on the IrO2 (110) Surface. Science, 356, 299-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Moon, G.-H., Kim, S., Cho, Y.-J., et al. (2017) Synergistic Combi-nation of Bandgap-Modified Carbon Nitride and WO3 for Visible Light-Induced Oxidation of Arsenite Accelerated by In-Situ Fenton Reaction. Applied Catalysis B: Environmental, 218, 819-824. [Google Scholar] [CrossRef]
|
|
[15]
|
Hou, Y., Wang, F., Qin, C., et al. (2022) A Self-Healing Elec-trocatalytic System via Electrohydrodynamics Induced Evolution in Liquid Metal. Nature Communications, 13, Article No. 7625. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liu, L.-Y., Xie, G.-J., Xing, D.-F., et al. (2020) Biological Conversion of Methane to Polyhydroxyalkanoates: Current Advances, Challenges, and Perspectives. Environmental Sci-ence and Ecotechnology, 2, Article ID: 100029. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Henares, M., Ferrero, P., San-Valero, P., Martínez-Soria, V. and Izquierdo, M. (2018) Performance of a Polypropylene Membrane Contactor for the Recovery of Dissolved Methane from Anaerobic Effluents: Mass Transfer Evaluation, Long-Term Operation and Cleaning Strategies. Journal of Membrane Science, 563, 926-937. [Google Scholar] [CrossRef]
|
|
[18]
|
Fornaciari, J.C., Primc, D., Kawashima, K., et al. (2020) A Perspective on the Electrochemical Oxidation of Methane to Methanol in Membrane Electrode Assemblies. ACS Energy Letters, 5, 2954-2963. [Google Scholar] [CrossRef]
|
|
[19]
|
Liu, K., Smith, W.A. and Burdyny, T. (2019) Introductory Guide to Assembling and Operating Gas Diffusion Electrodes for Electrochemical CO2 Reduction. ACS Energy Letters, 4, 639-643. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yuan, S., Li, Y., Peng, J., et al. (2020) Conversion of Methane into Liquid Fuels—Bridging Thermal Catalysis with Electrocatalysis. Advanced Energy Materials, 10, Article ID: 2002154. [Google Scholar] [CrossRef]
|
|
[21]
|
Promoppatum, P. and Viswanathan, V. (2016) Identifying Material and Device Targets for a Flare Gas Recovery System Utilizing Electrochemical Conversion of Methane to Methanol. ACS Sustainable Chemistry & Engineering, 4, 1736-1745. [Google Scholar] [CrossRef]
|
|
[22]
|
Petrik, N.G. and Kimmel, G.A. (2011) Electron- and Hole-Mediated Reactions in UV-Irradiated O2 Adsorbed on Reduced Rutile TiO2 (110). The Journal of Physical Chem-istry C, 115, 152-164. [Google Scholar] [CrossRef]
|
|
[23]
|
Wu, S., Žurauskas, J., Domański, M., et al. (2021) Hole-Mediated Photoredox Catalysis: Tris(p-Substituted) Biarylaminium Radical Cations as Tunable, Precomplexing and Potent Photooxidants. Organic Chemistry Frontiers, 8, 1132-1142. [Google Scholar] [CrossRef]
|
|
[24]
|
Di Valentin, C. (2016) A Mechanism for the Hole-Mediated Water Photooxidation on TiO2 (101) Surfaces. Journal of Physics: Condensed Matter, 28, Article ID: 074002. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Qiao, M. and Titirici, M.M. (2018) Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. Chemistry—A European Journal, 24, 18374-18384. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wagner, A., Sahm, C.D. and Reisner, E. (2020) Towards Molecular Understanding of Local Chemical Environment Effects in Electro- and Photocatalytic CO2 Reduction. Nature Catalysis, 3, 775-786. [Google Scholar] [CrossRef]
|
|
[27]
|
Moon, G.-H., Yu, M., Chan, C.K. and Tüysüz, H. (2019) High-ly Active Cobalt-Based Electrocatalysts with Facile Incorporation of Dopants for the Oxygen Evolution Reaction. An-gewandte Chemie, 131, 3529-3533. [Google Scholar] [CrossRef]
|
|
[28]
|
Yu, M., Moon, G., Bill, E. and Tüysüz, H. (2019) Optimizing Ni-Fe Electrocatalysts for Oxygen Evolution Reaction by Using Hard Templating as a Toolbox. ACS Applied Energy Materials, 2, 1199-1209. [Google Scholar] [CrossRef]
|
|
[29]
|
Moon, G.-H., Wang, Y., Kim, S., Budiyanto, E. and Tüysüz, H. (2022) Preparation of Practical High-Performance Electrodes for Acidic and Alkaline Media Water Electrolysis. ChemSusChem, 15, e202102114. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Rocha, R.S., Reis, R.M., Lanza, M.R.V. and Bertazzoli, R. (2013) Electrosynthesis of Methanol from Methane: The Role of V2O5 in the Reaction Selectivity for Methanol of a TiO2/RuO2/V2O5 Gas Diffusion Electrode. Electrochimica Acta, 87, 606-610. [Google Scholar] [CrossRef]
|
|
[31]
|
Kim, R.S. and Surendranath, Y. (2019) Electrochemical Reoxi-dation Enables Continuous Methane-to-Methanol Catalysis with Aqueous Pt Salts. ACS Central Science, 5, 1179-1186. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ma, J., Mao, K., Low, J., et al. (2021) Efficient Photoelectrochem-ical Conversion of Methane into Ethylene Glycol by WO3 Nanobar Arrays. Angewandte Chemie, 133, 9443-9447. [Google Scholar] [CrossRef]
|
|
[33]
|
Jang, J., Shen, K. and Morales-Guio, C.G. (2019) Electrochemical Direct Partial Oxidation of Methane to Methanol. Joule, 3, 2589-2593. [Google Scholar] [CrossRef]
|
|
[34]
|
Wang, Q., Kan, M., Han, Q. and Zheng, G. (2021) Electrochemical Methane Conversion. Small Structures, 2, Article ID: 2100037. [Google Scholar] [CrossRef]
|
|
[35]
|
Xie, S., Lin, S., Zhang, Q., Tian, Z. and Wang, Y. (2018) Selective Electrocatalytic Conversion of Methane to Fuels and Chemicals. Journal of Energy Chemistry, 27, 1629-1636. [Google Scholar] [CrossRef]
|
|
[36]
|
Sher, M.S.A., Oh, C., Park, H., et al. (2020) Catalytic Oxidation of Methane to Oxygenated Products: Recent Advancements and Prospects for Electrocatalytic and Photocatalytic Conversion at Low Temperatures. Advanced Science, 7, Article ID: 2001946. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Baltrusaitis, J., Jansen, I. and Schuttlefield Christus, J.D. (2014) Renewable Energy Based Catalytic CH4 Conversion to Fuels. Catalysis Science & Technology, 4, 2397-2411. [Google Scholar] [CrossRef]
|
|
[38]
|
Shi, T., Sridhar, D., Zeng, L. and Chen, A. (2022) Recent Advances in Catalyst Design for the Electrochemical and Photoelectrochemical Conversion of Methane to Value-Added Products. Electrochemistry Communications, 135, Article ID: 107220. [Google Scholar] [CrossRef]
|
|
[39]
|
Zhang, Y., Li, J. and Kornienko, N. (2021) Towards Atomic Precision in HMF and Methane Oxidation Electrocatalysts. Chemical Communications, 57, 4230-4238. [Google Scholar] [CrossRef]
|
|
[40]
|
Yin, H., Dou, Y., Chen, S., et al. (2020) 2D Electrocatalysts for Con-verting Earth-Abundant Simple Molecules into Value-Added Commodity Chemicals: Recent Progress and Perspectives. Advanced Materials, 32, Article ID: 1904870. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
de Souza, R.F.B., Florio, D.Z., Antolini, E., Antolini, E. and Neto, A.O. (2022) Partial Methane Oxidation in Fuel Cell-Type Reactors for Co-Generation of Energy and Chemicals: A Short Review. Catalysts, 12, Article No. 217. [Google Scholar] [CrossRef]
|
|
[42]
|
Richard, D., Huang, Y.-C. and Morales-Guio, C.G. (2021) Recent Ad-vances in the Electrochemical Production of Chemicals from Methane. Current Opinion in Electrochemistry, 30, Article ID: 100793. [Google Scholar] [CrossRef]
|
|
[43]
|
Abdelkader Mohamed, A.G., Zahra Naqviab, S.A. and Wang, Y. (2021) Advances and Fundamental Understanding of Electrocatalytic Methane Oxidation. ChemCatChem, 13, 787-805. [Google Scholar] [CrossRef]
|
|
[44]
|
Luo, J.H., Hong, Z.S., Chao, T.H. and Cheng, M.J. (2019) Quantum Mechanical Screening of Metal-N4-Functionalized Graphenes for Electrochemical Anodic Oxidation of Light Alkanes to Oxygenates. The Journal of Physical Chemistry C, 123, 19033-19044. [Google Scholar] [CrossRef]
|
|
[45]
|
Tomita, A., Nakajima, J. and Hibino, T. (2008) Direct Oxidation of Methane to Methanol at Low Temperature and Pressure in an Electrochemical Fuel Cell. Angewandte Chemie Interna-tional Edition, 46, 1462-1464. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Van Vleck, J.H. (1933) On the Theory of the Structure of CH4 and Related Molecules. Part I. The Journal of Chemical Physics, 1, 177-182. [Google Scholar] [CrossRef]
|
|
[47]
|
Prajapati, A., Collins, B.A., Goodpaster, J.D. and Singh, M.R. (2021) Fundamental Insight into Electrochemical Oxidation of Methane towards Methanol on transition Metal Oxides. Proceed-ings of the National Academy of Sciences of the United States of America, 118, e2023233118. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kang, Y., Li, Z., Lv, X., et al. (2021) Active Oxygen Promoted Electrochemical Conversion of Methane on Two-Dimensional Carbide (MXenes): From Stability, Reactivity and Selec-tivity. Journal of Catalysis, 393, 20-29. [Google Scholar] [CrossRef]
|
|
[49]
|
Boyd, M.J., Latimer, A.A., Dickens, C.F., et al. (2019) Elec-tro-Oxidation of Methane on Platinum under Ambient Conditions. ACS Catalysis, 9, 7578-7587. [Google Scholar] [CrossRef]
|
|
[50]
|
Lee, B. and Hibino, T. (2011) Efficient and Selective Formation of Methanol from Methane in a Fuel Cell-Type Reactor. Journal of Catalysis, 279, 233-240. [Google Scholar] [CrossRef]
|
|
[51]
|
Song, Y., Zhao, Y., Nan, G., et al. (2020) Electrocatalytic Oxidation of Methane to Ethanol via NiO/Ni Interface. Applied Catalysis B: Environmental, 270, Article ID: 118888. [Google Scholar] [CrossRef]
|
|
[52]
|
Oh, C., Kim, J., Hwang, Y.J., Ma, M. and Park, J.H. (2021) Electrocatalytic methane oxidation on Co3O4-incorporated ZrO2 nanotube powder. Applied Catalysis B: Environmental, 283, Article ID: 119653. [Google Scholar] [CrossRef]
|
|
[53]
|
Xie, Z., Chen, M., Chen, Y., et al. (2021) Electrocatalytic Me-thane Oxidation to Ethanol via Rh/ZnO Nanosheets. The Journal of Physical Chemistry C, 125, 13324-13330. [Google Scholar] [CrossRef]
|
|
[54]
|
Ma, M., Oh, C., Kim, J., Moon, J.H. and Park, J.H. (2019) Electro-chemical CH4 Oxidation into Acids and Ketones on ZrO2: NiCo2O4 Quasi-Solid Solution Nanowire Catalyst. Applied Catalysis B: Environmental, 259, Article ID: 118095. [Google Scholar] [CrossRef]
|
|
[55]
|
Hahn, F. and Melendres, C .A. (2001) Anodic Oxidation of Methane at Noble Metal Electrodes: an “in Situ” Surface Enhanced Infrared Spectroelectrochemical Study. Electrochimica Acta, 46, 3525-3534. [Google Scholar] [CrossRef]
|
|
[56]
|
Nandenha, J., Fontes, E.H., Piasentin, R.M., Fonseca, F.C. and Neto, A.O. (2018) Direct Oxidation of Methane at Low Temperature Using Pt/C, Pd/C, Pt/C-ATO and Pd/C-ATO Electrocatalysts Prepared by Sodium Borohydride Reduction Process. Journal of Fuel Chemistry and Technology, 46, 1137-1145. [Google Scholar] [CrossRef]
|
|
[57]
|
Ren, X., Wang, Y., Liu, A., et al. (2020) Current Progress and Performance Improvement of Pt/C Catalysts for Fuel Cells. Journal of Materials Chemistry A, 8, 24284-24306. [Google Scholar] [CrossRef]
|
|
[58]
|
Nandenha, J., Piasentin, R.M., Silva, L.M.G., et al. (2019) Partial Oxi-dation of Methane and Generation of Electricity Using a PEMFC. Ionics, 25, 5077-5082. [Google Scholar] [CrossRef]
|
|
[59]
|
Wang, Q., Li, T., Yang, C., et al. (2021) Electrocatalytic Methane Oxidation Greatly Promoted by Chlorine Intermediates. Angewandte Chemie International Edition, 60, 17398-17403. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Exner, K.S., Anton, J., Jacob, T. and Over, H. (2014) Controlling Se-lectivity in the Chlorine Evolution Reaction over RuO2-Based Catalysts. Angewandte Chemie, 126, 11212-11215. [Google Scholar] [CrossRef]
|
|
[61]
|
Feng, N., Lin, H., Song, H., et al. (2021) Efficient and Selective Photocatalytic CH4 Conversion to CH3OH with O2 by Controlling Overoxidation on TiO2. Nature Communications, 12, Article No. 4652. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Perry, S.C., de León, C.P. and Walsh, F.C. (2020) The Design, Performance and Continuing Development of Electrochemical Reactors for Clean Electrosynthesis. Journal of the Elec-trochemical Society, 167, Article ID: 155525. [Google Scholar] [CrossRef]
|
|
[63]
|
Xu, Y. and Lin, L. (1999) Recent Advances in Methane Dehy-dro-Aromatization over Transition Metal Ion-Modified Zeolite Catalysts Under Non-Oxidative Conditions. Applied Ca-talysis A: General, 188, 53-67. [Google Scholar] [CrossRef]
|
|
[64]
|
Lin, X.-Y., Li, J.-Y., Qi, M.-Y., Tang, Z.-R. and Xu, Y.-J. (2021) Methane Conversion over Artificial Photocatalysts. Catalysis Communications, 159, Article ID: 106346. [Google Scholar] [CrossRef]
|
|
[65]
|
Spinner, N. and Mustain, W.E. (2013) Electrochemical Methane Activation and Conversion to Oxygenates at Room Temperature. ECS Transactions, 53, 1-20. [Google Scholar] [CrossRef]
|
|
[66]
|
Li, W., He, D., Hu, G., et al. (2018) Selective CO Production by Photoelectrochemical Methane Oxidation on TiO2. ACS Central Science, 4, 631-637. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
O’Reilly, M.E., Kim, R.S., Oh, S. and Surendranath, Y. (2017) Catalytic Methane Monofunctionalization by an Electrogenerated High-Valent Pd Intermediate. ACS Central Science, 3, 1174-1179. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Ma, M., Jin, B.J., Li, P., et al. (2017) Ultrahigh Electrocatalytic Conversion of Methane at Room Temperature. Advanced Science, 4, Article ID: 1700379. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Rocha, R.S., Camargo, L.M., Lanza, M.R.V. and Bertazzoli, R. (2010) A Feasibility Study of the Electro-Recycling of Greenhouse Gases: Design and Characterization of a (TiO2/RuO2)/PTFE Gas Diffusion Electrode for the Electrosynthesis of Methanol from Methane. Electrocatalysis, 1, 224-229. [Google Scholar] [CrossRef]
|
|
[70]
|
Frese Jr., K.W. (1991) Partial Electrochemical Oxidation of Me-thane under Mild Conditions. Langmuir, 7, 13-15. [Google Scholar] [CrossRef]
|
|
[71]
|
Omasta, T.J., Rigdon, W.A., Lewis, C.A., Stanis, R.J., Liu, R., Fan, C.Q. and Mustain, W.E. (2015) Two Pathways for Near Room Temperature Electrochemical Conversion of Methane to Methanol. ECS Transactions, 66, 129-136. [Google Scholar] [CrossRef]
|
|
[72]
|
Morejudo, S.H., Zanón, R., Escolástico, S., et al. (2016) Direct Con-version of Methane to Aromatics in a Catalytic Co-Ionic Membrane Reactor. Science, 353, 563-566. [Google Scholar] [CrossRef] [PubMed]
|