|
[1]
|
Griveau, A., Seano, G., Shelton, S.J., Kupp, R., Jahangiri, A., Obernier, K., Krishnan, S., Lindberg, O.R., Yuen, T.J., Tien, A.-C., et al. (2018) A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Mi-croenvironment. Cancer Cell, 33, 874-889. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Schiff, D. (2017) Low-Grade Gliomas. Continuum, 23, 1564-1579. [Google Scholar] [CrossRef]
|
|
[3]
|
Schiff, D., Van den Bent, M., Vogelbaum, M.A., Wick, W., Miller, C.R., Taphoorn, M., Pope, W., Brown, P.D., Platten, M., Jalali, R., et al. (2019) Recent Developments and Future Directions in Adult Lower-Grade Gliomas: Society for Neu-ro-Oncology (SNO) and European Association of Neuro-Oncology (EANO) Consensus. Neuro-Oncology, 21, 837-853. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Jakola, A.S., Myrmel, K.S., Kloster, R., Torp, S.H., Lindal, S., Unsgard, G. and Solheim, O. (2012) Comparison of a Strategy Favoring Early Surgical Resection vs a Strategy Favoring Watchful Waiting in Low-Grade Gliomas. JAMA, 308, 1881-1888. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Dhawan, S., Patil, C.G., Chen, C. and Venteicher, A.S. (2020) Early Versus Delayed Postoperative Radiotherapy for Treatment of Low-Grade Gliomas. Cochrane Database of Systematic Reviews, No. 1, Article No. CD009229. [Google Scholar] [CrossRef]
|
|
[6]
|
Nejo, T., Matsushita, H., Karasaki, T., Nomura, M., Saito, K., Tanaka, S., Takayanagi, S., Hana, T., Takahashi, S., Kitagawa, Y., et al. (2019) Reduced Neoantigen Expression Re-vealed by Longitudinal Multiomics as a Possible Immune Evasion Mechanism in Glioma. Cancer Immunology Research, 7, 1148-1161. [Google Scholar] [CrossRef]
|
|
[7]
|
Appolloni, I., Alessandrini, F., Ceresa, D., Marubbi, D., Gambini, E., Reverberi, D., Loiacono, F. and Malatesta, P. (2019) Progression from Low- to High-Grade in a Glioblas-toma Model Reveals the Pivotal Role of Immunoediting. Cancer Letters, 442, 213-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Timpl, R., Rohde, H., Robey, P.G., Rennard, S.I., Foidart, J.M. and Martin, G.R. (1979) Laminin—A Glycoprotein from Basement Membranes. The Journal of Biological Chemistry, 254, 9933-9937. [Google Scholar] [CrossRef]
|
|
[9]
|
Chung, A.E., Jaffe, R., Freeman, I.L., Vergnes, J.P., Bra-ginski, J.E. and Carlin, B. (1979) Properties of a Basement Membrane-Related Glycoprotein Synthesized in Culture by a Mouse Embryonal Carcinoma-Derived Cell Line. Cell, 16, 277-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Aumailley, M., Bruckner-Tuderman, L., Carter, W.G., Deutz-mann, R., Edgar, D., Ekblom, P., Engel, J., Engvall, E., Hohenester, E., Jones, J.C., et al. (2005) A Simplified Laminin Nomenclature. Matrix Biology, 24, 326-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yurchenco, P.D. (2011) Basement Membranes: Cell Scaffold-ings and Signaling Platforms. Cold Spring Harbor Perspectives Biology, 3, a004911. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Qin, Y., Rodin, S., Simonson, O.E. and Hollande, F. (2017) Laminins and Cancer Stem Cells: Partners in Crime? Seminars in Cancer Biology, 45, 3-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Korbakis, D., Dimitromanolakis, A., Prassas, I., Davis, G.J., Barber, E., Reckamp, K.L., Blasutig, I. and Diamandis, E.P. (2015) Serum LAMC2 Enhances the Prognostic Value of a Multi-Parametric Panel in Non-Small Cell Lung Cancer. British Journal of Cancer, 113, 484-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bello, L., Giussani, C., Carrabba, G., Pluderi, M., Costa, F. and Bikfalvi, A. (2004) Angiogenesis and Invasion in Gliomas. Cancer Treatment and Research, 117, 263-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Onishi, M., Kurozumi, K., Ichikawa, T. and Date, I. (2013) Mechanisms of Tumor Development and Anti-Angiogenic Therapy in Glioblastoma Multiforme. Neurologia Medi-co-Chirurgica, 53, 755-763. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kurozumi, K., Onishi, M., Ichikawa, T., Fujii, K., Ishida, J., Shima-zu, Y. and Date, I. (2013) [III. Molecular Targeting Therapy for Glioma-Bevacizumab and Cilengitide]. Japanese Journal of Cancer and Chemotherapy, 40, 718-722.
|
|
[17]
|
Varner, J.A. and Cheresh, D.A. (1996) Integrins and Cancer. Current Opinion in Cell Biology, 8, 724-730. [Google Scholar] [CrossRef]
|
|
[18]
|
Lu, P., Weaver, V.M. and Werb, Z. (2012) The Extracellular Matrix: A Dynamic Niche in Cancer Progression. Journal of Cell Biology, 196, 395-406. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Patarroyo, M., Tryggvason, K. and Virtanen, I. (2002) Laminin Isoforms in Tumor Invasion, Angiogenesis and Metastasis. Seminars in Cancer Biology, 12, 197-207. [Google Scholar] [CrossRef]
|
|
[20]
|
Oikawa, Y., Hansson, J., Sasaki, T., Rousselle, P., Do-mogatskaya, A., Rodin, S., Tryggvason, K. and Patarroyo, M. (2011) Melanoma Cells Produce Multiple Laminin Isoforms and Strongly Migrate on α5 Laminin(s) via Several Integrin Receptors. Experimental Cell Research, 317, 1119-1133. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Givant-Horwitz, V., Davidson, B. and Reich, R. (2004) Laminin-Induced Signaling in Tumor Cells: The Role of the M(r) 67,000 Laminin Receptor. Cancer Research, 64, 3572-3579. [Google Scholar] [CrossRef]
|
|
[22]
|
Takada, Y., Ye, X. and Simon, S. (2007) The Integrins. Genome Biology, 8, Article No. 215. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hood, J.D. and Cheresh, D.A. (2002) Role of Integrins in Cell Inva-sion and Migration. Nature Reviews Cancer, 2, 91-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Schnell, O., Krebs, B., Wagner, E., Romagna, A., Beer, A.J., Grau, S.J., Thon, N., Goetz, C., Kretzschmar, H.A., Tonn, J.C. and Goldbrunner, R.H. (2008) Expression of Integrin αvβ3 in Gliomas Correlates with Tumor Grade and Is Not Restricted to Tumor Vas-culature. Brain Pathology, 18, 378-386. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kurozumi, K., Ichikawa, T., Onishi, M., Fujii, K. and Date, I. (2012) Cilengitide Treatment for Malignant Glioma: Current Status and Future Direction. Neurologia Medico-Chirurgica, 52, 539-547. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Meyer, A., Auernheimer, J., Modlinger, A. and Kessler, H. (2006) Targeting RGD Recognizing Integrins: Drug Development, Bio-material Research, Tumor Imaging and Targeting. Current Pharmaceutical Design, 12, 2723-2747. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Leavesley, D.I., Ferguson, G.D., Wayner, E.A. and Cheresh, D.A. (1992) Requirement of the Integrin β3 Subunit for Carcinoma Cell Spreading or Migration on Vitronectin and Fi-brinogen. Journal of Cell Biology, 117, 1101-1107. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tabatabai, G., Weller, M., Nabors, B., Picard, M., Reardon, D., Mik-kelsen, T., Ruegg, C. and Stupp, R. (2010) Targeting Integrins in Malignant Glioma. Targeted Oncology, 5, 175-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
MacDonald, T.J., Taga, T., Shimada, H., Tabrizi, P., Zlokovic, B.V., Cheresh, D.A. and Laug, W.E. (2001) Preferential susceptibility of Brain Tumors to the Antiangiogenic Effects of an αv Integrin Antagonist. Neurosurgery, 48, 151-157. [Google Scholar] [CrossRef]
|
|
[30]
|
Onishi, M., Kurozumi, K., Ichikawa, T., Michiue, H., Fujii, K., Ishida, J., Shimazu, Y., Chiocca, E.A., Kaur, B. and Date, I. (2013) Gene Expression Profiling of the An-ti-Glioma Effect of Cilengitide. SpringerPlus, 2, Article No. 160. [Google Scholar] [CrossRef] [PubMed]
|