|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Brown, M.T., Andrade, J., Radhakrishna, H., et al. (1998) ASAP1, a Phospholipid-Dependent Arf GTPase-Activating Protein That Associates with and Is Phosphorylated by Src. Molecular and Cellular Biology, 18, 7038-7051. [Google Scholar] [CrossRef]
|
|
[3]
|
Li, X. and Wang, J. (2020) Mechanical Tumor Microenvironment and Transduction: Cytoskeleton Mediates Cancer Cell Invasion and Metastasis. International Journal of Biological Sci-ences, 16, 2014-2028. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Petit, V. and Thiery, J.-P. (2000) Focal Adhesions: Structure and Dynamics. Biology of the Cell, 92, 477-494. [Google Scholar] [CrossRef]
|
|
[5]
|
Liu, Y., Loijens, J.C., Martin, K.H., Karginov, A.V. and Parsons, J.T. (2002) The Association of ASAP1, an ADP Ribosylation Factor-GTPase Activating Protein, with Focal Adhesion Kinase Contributes to the Process of Focal Adhesion Assembly. Molecular Biology of the Cell, 13, 2147-2156. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hashimoto, S., Hirose, M., Hashimoto, A., et al. (2006) Targeting AMAP1 and Cortactin Binding Bearing an Atypical Src Homology 3/Proline Interface for Prevention of Breast Cancer Invasion and Metastasis. Proceedings of the National Academy of Sciences of the United States of America, 103, 7036-7041. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, K., Hu, Y.-B., Zhao, Y. and Ye, C. (2021) Long Non-Coding RNA ASAP1-IT1 Suppresses Ovarian Cancer Progression by Regulating Hippo/YAP Signaling. Interna-tional Journal of Molecular Medicine, 47, Article No. 44. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Royer, C. and Lu, X. (2011) Epithelial Cell Polarity: A Major Gate-keeper against Cancer? Cell Death & Differentiation, 18, 1470-1477. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Vitali, T., Girald-Berlingeri, S., Randazzo, P.A. and Chen, P.-W. (2019) Arf GAPs: A Family of Proteins with Disparate Functions That Converge on a Common Structure, the Integrin Adhe-sion Complex. Small GTPase, 10, 280-288.
|
|
[10]
|
Chen, P.-W., Billington, N., Maron, B.Y., et al. (2020) The BAR Domain of the Arf GTPase-Activating Protein ASAP1 Directly Binds Actin Filaments. Journal of Biological Chemistry, 295, 11303-11315. [Google Scholar] [CrossRef]
|
|
[11]
|
Müller, T., Stein, U., Poletti, A., et al. (2010) ASAP1 Promotes Tumor Cell Motility and Invasiveness, Stimulates Metastasis Formation in Vivo, and Correlates with Poor Survival in Colorectal Cancer Patients. Oncogene, 29, 2393-2403. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Li, M., Tian, L., Yao, H., et al. (2014) ASAP1 Mediates the Invasive Phenotype of Human Laryngeal Squamous Cell Carcinoma to Affect Survival Prognosis. Oncology Reports, 31, 2676-2682. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Guo, L., Zhou, Y., Chen, Y., et al. (2018) LncRNA ASAP1-IT1 Positively Modulates the Development of Cholangiocarcinoma via Hedgehog Signaling Pathway. Biomedi-cine & Pharmacotherapy, 103, 167-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bang, S., Jee, S., Son, H., et al. (2022) Clinicopathological Im-plications of ASAP1 Expression in Hepatocellular Carcinoma. Pathology and Oncology Research, 28, Article ID: 1610635. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
姜娜娜. ASAP1在甲状腺乳头状癌细胞自噬中的作用及其机制[D]: [硕士学位论文]. 郑州: 郑州大学, 2020.
|
|
[16]
|
罗琼. ASAP1基因对胃癌恶性生物学行为影响及其机制研究[D]: [硕士学位论文]. 福州: 福建医科大学, 2020.
|
|
[17]
|
Hashimoto, A., Handa, H., Hata, S., et al. (2021) Inhibition of Mutant KRAS-Driven Overexpression of ARF6 and MYC by an eIF4A Inhibitor Drug Improves the Ef-fects of Anti-PD-1 Immunotherapy for Pancreatic Cancer. Cell Communication and Signaling, 19, Article No. 54. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gowrikumar, S., Primeaux, M., Pravoverov, K., et al. (2021) A Claudin-Based Molecular Signature Identifies High-Risk, Chemoresistant Colorectal Cancer Patients. Cells, 10, Article No. 2211. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Golubovskaya, VM. (2014) Targeting FAK in Human Cancer: From Finding to First Clinical Trials. Frontiers in Bioscience-Landmark, 19, 687-706. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Huo, X., Zhang, W., Zhao, G., et al. (2022) FAK PROTAC Inhibits Ovarian Tumor Growth and Metastasis by Disrupting Kinase Dependent and Independent Pathways. Frontiers in Oncology, 12, Article 851065. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, Z., Li, J., Jiao, S., Han, G., Zhu, J. and Liu, T. (2022) Func-tional and Clinical Characteristics of Focal Adhesion Kinases in Cancer Progression. Frontiers in Cell and Developmen-tal Biology, 10, Article 1040311. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Chuang, H.-H., Zhen, Y.-Y., Tsai, Y.-C., Chuang, C.-H., Hsiao, M., Huang, M.-S. and Yang, C.-J. (2022) FAK in Cancer: From Mechanisms to Therapeutic Strategies. International Journal of Molecular Sciences, 23, Article No. 1726. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Plaza-Menacho, I., Morandi, A., Mologni, L., Boender, P., Gambacorti-Passerini, C., Magee, A.I., Hofstra, R.M., Knowles, P., McDonald, N.Q. and Isacke, C.M. (2011) Focal Adhesion Kinase (FAK) Binds RET Kinase via Its FERM Domain, Priming a Direct and Reciprocal RET-FAK Transactivation Mechanism. Journal of Biological Chemistry, 286, 17292-17302. [Google Scholar] [CrossRef]
|
|
[24]
|
Mishra, Y.G. and Manavathi, B. (2021) Focal Adhesion Dynamics in Cellular Function and Disease. Cellular Signalling, 85, Article ID: 110046. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ma, J., Huang, W., Zhu, C., et al. (2021) MiR-423-3p Activates FAK Signaling Pathway to Drive EMT Process and Tumor Growth in Lung Adenocarcinoma through Targeting CYBRD1. Journal of Clinical Laboratory Analysis, 35, e24044. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Banyard, J. and Bielenberg, D.R. (2015) The Role of EMT and MET in Cancer Dissemination. Connective Tissue Research, 56, 403-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lamouille, S., Xu, J. and Derynck, R. (2014) Mo-lecular Mechanisms of Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 15, 178-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Huang, K., Gao, N., Bian, D., et al. (2020) Correlation between FAK and EGF-Induced EMT in Colorectal Cancer Cells. Journal of Oncology, 2020, Article ID: 5428920. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, N. and Chang, L.-L. (2020) Maspin Suppresses Cell Invasion and Migration in Gastric Cancer through Inhibiting EMT and Angiogenesis via ITGB1/FAK pathway. Human Cell, 33, 663-675. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Peng, Y.-S., Syu, J.-P., Wang, S.-D., Pan, P.-C. and Kung, H.-N. (2020) BSA-Bounded p-Cresyl Sulfate Potentiates the Malignancy of Bladder Carcinoma by Triggering Cell Mi-gration and EMT through the ROS/Src/FAK Signaling Pathway. Cell Biology and Toxicology, 36, 287-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhou, J., Yi, Q. and Tang, L. (2019) The Roles of Nuclear Focal Adhesion Kinase (FAK) on Cancer: A Focused Review. Journal of Experimental & Clinical Cancer Research, 38, Arti-cle No. 250. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, H., Gao, Y. and Ren, C. (2021) Focal Adhesion Kinase Inhib-itor BI 853520 Inhibits Cell Proliferation, Migration and EMT Process through PI3K/AKT/mTOR Signaling Pathway in Ovarian Cancer. Discover Oncology, 12, Article No. 29. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Shiau, J.-P., Wu, C.-C., Chang, S.-J., Pan, M.-R., Liu, W., Ou-Yang, F., Chen, F.-M., Hou, M.-F., Shih, S.-L. and Luo, C.-W. (2021) FAK Regulates VEGFR2 Expression and Promotes Angiogenesis in Triple-Negative Breast Cancer. Biomedi-cines, 9, Article No. 1789. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chen, X.L., Nam, J.O., Jean, C., Lawson, C., Walsh, C.T., Goka, E., Lim, S.-T., Tomar, A., Tancioni, I., Uryu, S., Guan, J.-L., Acevedo, L.M., Weis, S.M., Cheresh, D.A. and Schlaepfer, D.D. (2012) VEGF-Induced Vascular Permeability Is Mediated by FAK. Devel-opmental Cell, 22, 146-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Paul, R., Luo, M., Mo, X., Lu, J., Yeo, S.K. and Guan, J.L. (2020) FAK Activates AKT-mTOR Signaling to Promote the Growth and Progression of MMTV-Wnt1-Driven Basal-Like Mammary Tumors. Breast Cancer Research, 22, Article No. 59. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tanna, C.E., Goss, L.B., Ludwig, C.G. and Chen, P.-W. (2019) Arf GAPs as Regulators of the Actin Cytoskeleton—An Update. International Journal of Molecular Sciences, 20, Arti-cle No. 442.
Wang, B., Li, H., Zhao, X., et al. (2021) A Luminacin D Analog HL142 Inhibits Ovarian Tumor Growth and Metastasis by Reversing EMT and Attenuating the TGFβ and FAK Pathways. Journal of Cancer, 12, 5654-5663. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Mohanty, A., Pharaon, R.R., Nam, A., et al. (2020) FAK-Targeted and Combination Therapies for the Treatment of Cancer: An Overview of Phase I and II Clinical Trials. Expert Opinion on Investigational Drugs, 29, 399-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Castro-Guijarro, A.C., Vanderhoeven, F., Mondaca, J.M., et al. (2022) Combination Treatment of Retinoic Acid plus Focal Adhesion Kinase Inhibitor Prevents Tumor Growth and Breast Cancer Cell Metastasis. Cells, 11, Article No. 2988. [Google Scholar] [CrossRef] [PubMed]
|