| [1] | Li, X., Ramadori, P., Pfister, D., Seehawer, M., Zender, L. and Heikenwalder, M. (2021) The Immunological and Meta-bolic Landscape in Primary and Metastatic Liver Cancer. Nature Reviews Cancer, 21, 541-557. https://doi.org/10.1038/s41568-021-00383-9
 | 
                     
                                
                                    
                                        | [2] | Siegel, R.L., Miller, K.D. and Jemal, A. (2019) Cancer Statistics, 2019. CA, 69, 7-34. https://doi.org/10.3322/caac.21551
 | 
                     
                                
                                    
                                        | [3] | Bruix, J. and Sherman, M. (2011) Management of Hepatocellular Carci-noma: An Update. Hepatology, 53, 1020-1022. https://doi.org/10.1002/hep.24199
 | 
                     
                                
                                    
                                        | [4] | Tsuchiya, N., Sawada, Y., Endo, I., et al. (2015) Biomarkers for the Early Diagnosis of Hepatocellular Carcinoma. World Journal of Gastroenterology, 21, 10573-10583. https://doi.org/10.3748/wjg.v21.i37.10573
 | 
                     
                                
                                    
                                        | [5] | Everhart, J.E. and Ruhl, C.E. (2009) Burden of Digestive Diseases in the United States Part III: Liver, Biliary Tract, and Pancreas. Gastroenterology, 136, 1134-1144. https://doi.org/10.1053/j.gastro.2009.02.038
 | 
                     
                                
                                    
                                        | [6] | Mao, B., Ma, J., Duan, S., Xia, Y., Tao, Y. and Zhang, L. (2021) Preoperative Classification of Primary and Metastatic Liver Cancer via Machine Learning-Based Ultrasound Radiomics. European Radiology, 31, 4576-486. https://doi.org/10.1007/s00330-020-07562-6
 | 
                     
                                
                                    
                                        | [7] | Chen, B., Garmire, L., Calvisi, D.F., Chua, M.-S., Kelley, R.K. and Chen, X. (2020) Harnessing Big ‘Omics’ Data and AI for Drug Discovery in Hepatocellular Carcinoma. Nature Re-views Gastroenterology & Hepatology, 17, 238-251. https://doi.org/10.1038/s41575-019-0240-9
 | 
                     
                                
                                    
                                        | [8] | Ji, G.W., Zhu, F.P., Xu, Q., et al. (2019) Machine-Learning Analysis of Contrast-Enhanced CT Radiomics Predicts Recurrence of Hepatocellular Carcinoma after Resection: A Mul-ti-Institutional Study. EBioMedicine, 50, 156-165. https://doi.org/10.1016/j.ebiom.2019.10.057
 | 
                     
                                
                                    
                                        | [9] | Yu, Y., Li, Y., Zhang, Z., et al. (2020) A Bibliometric Analysis Using VOSViewer of Publications on COVID-19. Annals of Translational Medicine, 8, 816-826. https://doi.org/10.21037/atm-20-4235
 | 
                     
                                
                                    
                                        | [10] | Ozsoy, Z. and Demir, E. (2018) The Evolution of Bariatric Surgery Publications and Global Productivity: A Bibliometric Analysis. Obesity Surgery, 28, 1117-1129. https://doi.org/10.1007/s11695-017-2982-1
 | 
                     
                                
                                    
                                        | [11] | Murakami, Y., Yasuda, T., Saigo, K., Urashima, T., Toyoda, H., Okanoue, T. and Shimotohno, K. (2006) Comprehensive Analysis of microRNA Expression Patterns in Hepatocellular Carcinoma and Non-Tumorous Tissues. Oncogene, 25, 2537-2545. https://doi.org/10.1038/sj.onc.1209283
 | 
                     
                                
                                    
                                        | [12] | Li, X., Chen, H., Qi, X., et al. (2018) H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes. IEEE Transactions on Medical Imaging, 37, 2663-2674. https://doi.org/10.1109/TMI.2018.2845918
 | 
                     
                                
                                    
                                        | [13] | Chen, X., Yan, C.C., Zhang, X., et al. (2017) Long Non-Coding RNAs and Complex Diseases: from experimental results to computational models. Briefings in Bioinformatics, 18, 558-576. https://doi.org/10.1093/bib/bbw060
 | 
                     
                                
                                    
                                        | [14] | Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA, 68, 394-424. https://doi.org/10.3322/caac.21492
 | 
                     
                                
                                    
                                        | [15] | Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. https://doi.org/10.1148/radiol.2015151169
 | 
                     
                                
                                    
                                        | [16] | Yasaka, K., Akai, H., Abe, O. and Kiryu, S. (2018) Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-Enhanced CT: A Prelimi-nary Study. Radiology, 286, 887-896. https://doi.org/10.1148/radiol.2017170706
 | 
                     
                                
                                    
                                        | [17] | Torkamani, A., Andersen, K.G., Steinhubl, S.R. and Topol, E.J. (2017) High-Definition Medicine. Cell, 170, 828-843. https://doi.org/10.1016/j.cell.2017.08.007
 | 
                     
                                
                                    
                                        | [18] | Patel, S.K., George, B. and Rai, V. (2020) Artificial Intelligence to Decode Cancer Mechanism: Beyond Patient Stratification for Precision Oncology. Frontiers in Pharmacology, 11, Arti-cle 1177. | 
                     
                                
                                    
                                        | [19] | Chaudhary, K., Poirion, O.B., Lu, L. and Garmire, L.X. (2018) Deep Learning-Based Multi-Omics Inte-gration Robustly Predicts Survival in Liver Cancer. Clinical Cancer Research, 24, 1248-1259. https://doi.org/10.1158/1078-0432.CCR-17-0853
 | 
                     
                                
                                    
                                        | [20] | Li, J., Wei, L., Zhang, X., et al. (2021) DISMIR: Deep Learning-Based Noninvasive Cancer Detection by Integrating DNA Sequence and Methylation Information of Individual Cell-Free DNA Reads. Briefings in Bioinformatics, 22, 1-19. https://doi.org/10.1101/2021.01.12.426440
 | 
                     
                                
                                    
                                        | [21] | Schmauch, B., Herent, P., Jehanno, P., et al. (2019) Diagnosis of Focal Liver Lesions from Ultrasound Using Deep Learning. Diagnostic and Interventional Imaging, 100, 227-233. https://doi.org/10.1016/j.diii.2019.02.009
 | 
                     
                                
                                    
                                        | [22] | Yang, Q., Wei, J., Hao, X., et al. (2020) Improving B-Mode Ultra-sound Diagnostic Performance for Focal Liver Lesions Using Deep Learning: A Multicentre Study. EBioMedicine, 56, Article ID: 102777. https://doi.org/10.1016/j.ebiom.2020.102777
 | 
                     
                                
                                    
                                        | [23] | Mokrane, F.Z., Lu, L., Vavasseur, A., et al. (2020) Radiomics Machine-Learning Signature for Diagnosis of Hepatocellular Carcinoma in Cirrhotic Patients with Indeterminate Liver Nodules. European Radiology, 30, 558-570. https://doi.org/10.1007/s00330-019-06347-w
 | 
                     
                                
                                    
                                        | [24] | Bobo, M.F., Bao, S., Huo, Y., et al. (2018) Fully Convolutional Neural Networks Improve Abdominal Organ Segmentation [J]. Proceedings of SPIE—The International Society for Op-tical Engineering, 10574-10586. | 
                     
                                
                                    
                                        | [25] | Hamm, C.A., Wang, C.J., Savic, L.J., et al. (2019) Deep Learning for Liver Tu-mor Diagnosis Part I: Development of a Convolutional Neural Network Classifier for Multi-Phasic MRI. European Ra-diology, 29, 3338-3347. https://doi.org/10.1007/s00330-019-06205-9
 | 
                     
                                
                                    
                                        | [26] | Zhen, S.H., Cheng, M., Tao, Y.B., et al. (2020) Deep Learning for Accurate Diagnosis of Liver Tumor Based on Magnetic Resonance Imaging and Clinical Data. Frontiers in Oncology, 10, Article 680. https://doi.org/10.3389/fonc.2020.00680
 | 
                     
                                
                                    
                                        | [27] | Saillard, C., Schmauch, B., Laifa, O., et al. (2020) Predicting Surviv-al after Hepatocellular Carcinoma Resection Using Deep Learning on Histological Slides. Hepatology, 72, 2000-2013. https://doi.org/10.1002/hep.31207
 | 
                     
                                
                                    
                                        | [28] | Saito, A., Toyoda, H., Kobayashi, M., et al. (2021) Prediction of Early Re-currence of Hepatocellular Carcinoma after Resection Using Digital Pathology Images Assessed by Machine Learning. Modern Pathology, 34, 417-425. https://doi.org/10.1038/s41379-020-00671-z
 | 
                     
                                
                                    
                                        | [29] | Oezdemir, I., Wessner, C.E., Shaw, C., et al. (2020) Tumor Vascular Networks Depicted in Contrast-Enhanced Ultrasound Images as a Predictor for Transarterial Chemoemboliza-tion Treatment Response. Ultrasound in Medicine & Biology, 46, 2276-2286. https://doi.org/10.1016/j.ultrasmedbio.2020.05.010
 |