| [1] | 王凯玲, 梅妍妍, 崔蕾, 高超, 刘飞飞, 赵晓曦, 等. 两种化疗方案对于TEL-AML1融合基因阳性儿童急性淋巴细胞白血病的疗效比较[J]. 中国实验血液学杂志, 2014, 22(2): 285-290. | 
                     
                                
                                    
                                        | [2] | Capria, S., Molica, M., Mohamed, S., et al. (2020) A Review of Current Induction Strategies and Emerging Prognostic Factors in the Management of Children and Adolescents with Acute Lymphoblastic Leukemia. Expert Review of Hematology, 13, 755-769. https://doi.org/10.1080/17474086.2020.1770591
 | 
                     
                                
                                    
                                        | [3] | Inaba, H. and Pui, C.-H. (2021) Advances in the Diagnosis and Treatment of Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Medicine, 10, 1926. https://doi.org/10.3390/jcm10091926
 | 
                     
                                
                                    
                                        | [4] | Abdelmabood, S., Fouda, A.E., Boujettif, F. and Mansour, A. (2020) Treatment Outcomes of Children with Acute Lymphoblastic Leukemia in a Middle-Income Developing Country: High Mortalities, Early Relapses, and Poor Survival. The Journal of Pediatrics (Rio J), 96, 108-116. https://doi.org/10.1016/j.jped.2018.07.013
 | 
                     
                                
                                    
                                        | [5] | Bernt, K.M. and Hunger, S.P. (2014) Current Concepts in Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Frontiers in Oncology, 4, 54. https://doi.org/10.3389/fonc.2014.00054
 | 
                     
                                
                                    
                                        | [6] | Mullighan, C.G., Miller, C.B., Radtke, I., Phillips, L.A., Dalton, J., Ma, J., et al. (2008) BCR-ABL1 Lymphoblastic Leukaemia Is Characterized by the Deletion of Ikaros. Nature, 453, 110-114. https://doi.org/10.1038/nature06866
 | 
                     
                                
                                    
                                        | [7] | Iacobucci, I., Lonetti, A., Paoloni, F., et al. (2010) The PAX5 Gene Is Frequently Rearranged in BCR-ABL1-Positive Acute Lymphoblastic Leukemia but Is Not Associated with Outcome. A Report on Behalf of the GIMEMA Acute Leukemia Working Party. Haematologica, 95, 1683-1690. https://doi.org/10.3324/haematol.2009.020792
 | 
                     
                                
                                    
                                        | [8] | Notta, F., Mullighan, C.G., Wang, J.C.Y., Poeppl, A., Dou-latov, S., Phillips, L.A., et al. (2011) Evolution of Human BCR-ABL1 Lymphoblastic Leukaemia-Initiating Cells. Nature, 469, 362-367. https://doi.org/10.1038/nature09733
 | 
                     
                                
                                    
                                        | [9] | Churchman, M.L. and Mullighan, C.G. (2017) Ikaros: Ex-ploiting and Targeting the Hematopoietic Stem Cell Niche in B-Progenitor Acute Lymphoblastic Leukemia. Experimental Hematology, 46, 1-8. https://doi.org/10.1016/j.exphem.2016.11.002
 | 
                     
                                
                                    
                                        | [10] | Mizuta, S., Matsuo, K., Yagasaki, F., Yujiri, T., Hatta, Y., Ki-mura, Y., et al. (2011) Pre-Transplant Imatinib-Based Therapy Improves the Outcome of Allogeneic Hematopoietic Stem Cell Transplantation for BCR-ABL-Positive Acute Lymphoblastic Leukemia. Leukemia, 25, 41-47. https://doi.org/10.1038/leu.2010.228
 | 
                     
                                
                                    
                                        | [11] | Jing, Y., Chen, H.R., Liu, M.J., et al. (2014) Susceptibility of Ph-Positive All to TKI Therapy Associated with Bcr-Abl Rearrangement Patterns: A Retrospective Analysis. PLOS ONE, 9, e110431. https://doi.org/10.1371/journal.pone.0110431
 | 
                     
                                
                                    
                                        | [12] | Chang, B.H., Willis, S.G., Stork, L., Hunger, S.P., Carroll, W.L., Camitta, B.M., et al. (2012) Imatinib Resistant BCR-ABL1 Mutations at Relapse in Children with Ph+ ALL: A Children’s Oncology Group (COG) Study. British Journal of Haematology, 157, 507-510. https://doi.org/10.1111/j.1365-2141.2012.09039.x
 | 
                     
                                
                                    
                                        | [13] | Cerchione, C., Locatelli, F. and Martinelli, G. (2021) Da-satinib in the Management of Pediatric Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Frontiers in Oncology, 11, Article ID: 632231. https://doi.org/10.3389/fonc.2021.632231
 | 
                     
                                
                                    
                                        | [14] | Dalle, I.A., Jabbour, E., Short, N.J. and Ravandi, F. (2019) Treat-ment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Current Treatment Options in Oncology, 20, 4. https://doi.org/10.1007/s11864-019-0603-z
 | 
                     
                                
                                    
                                        | [15] | 曹文静, 李硕敏. BCR-ABL1激酶抑制剂的疗效与耐药机制研究进展[J]. 肿瘤药学, 2020, 10(6): 641-648. | 
                     
                                
                                    
                                        | [16] | Roberts, K.G., Li, Y.J., Payne-Turner, D., Harvey, R.C., Yang, Y.-L., Pei, D.Q., et al. (2014) Targetable Kinase-Activating Lesions in Ph-Like Acute Lymphoblastic Leukemia. The New England Journal of Medicine, 371, 1005-1015. https://doi.org/10.1056/NEJMoa1403088
 | 
                     
                                
                                    
                                        | [17] | Ou, Z.S., Sherer, M., Casey, J., Bakos, H.A., Vitullo, K., Hu, J., et al. (2016) The Genomic Landscape of PAX5, IKZF1, and CDKN2A/B Alterations in B-Cell Precursor Acute Lympho-blastic Leukemia. Cytogenetic and Genome Research, 150, 242-252. https://doi.org/10.1159/000456572
 | 
                     
                                
                                    
                                        | [18] | Roberts, K.G., Pei, D., Campana, D., Payne-Turner, D., Li, Y.J., Cheng, C., et al. (2014) Outcomes of Children with BCR-ABL1-Like Acute Lymphoblastic Leukemia Treated with Risk-Directed Therapy Based on the Levels of Minimal Residual Disease. Journal of Clinical Oncology, 32, 3012-3020. https://doi.org/10.1200/JCO.2014.55.4105
 | 
                     
                                
                                    
                                        | [19] | Heatley, S.L., Sadras, T., Kok, C.H., Nievergall, E., Quek, K., Dang, P., et al. (2017) High Prevalence of Relapse in Children with Philadelphia-Like Acute Lymphoblastic Leukemia Despite Risk-Adapted Treatment. Haematologica, 102, e490-e493. https://doi.org/10.3324/haematol.2016.162925
 | 
                     
                                
                                    
                                        | [20] | 张钰, 吴秉毅. CRLF2基因在B系急性淋巴细胞白血病中的研究进展[J]. 广东医学, 2017, 38(S1): 292-294. | 
                     
                                
                                    
                                        | [21] | Roberts, K.G., Morin, R.D., Zhang, J.H., Hirst, M., Zhao, Y.J., Su, X.P., et al. (2012) Genetic Alterations Activating Kinase and Cytokine Receptor Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell, 22, 153-166. https://doi.org/10.1016/j.ccr.2012.06.005
 | 
                     
                                
                                    
                                        | [22] | Roberts, K.G., Yang, Y.-L., Payne-Turner, D., Lin, W.W., Files, J.K., Dickerson, K., et al. (2017) Oncogenic Role and Therapeutic Targeting of ABL-Class and JAK-STAT Activating Kinase Alterations in Ph-Like ALL. Blood Advances, 1, 1657-1671. | 
                     
                                
                                    
                                        | [23] | Iacobucci, I., Li, Y.J., Roberts, K.G., Dobson, S.M., Kim, J.C., Payne-Turner, D., et al. (2016) Truncating Erythropoietin Receptor Rearrangements in Acute Lympho-blastic Leukemia. Cancer Cell, 29, 186-200. https://doi.org/10.1016/j.ccell.2015.12.013
 | 
                     
                                
                                    
                                        | [24] | Kobayashi, K., Miyagawa, N., Mitsui, K., Matsuoka, M., Kojima, Y., Takahashi, H., et al. (2015) TKI Dasatinib Monotherapy for a Patient with Ph-Like ALL Bearing ATF7IP/PDGFRB Translocation. Pediatric Blood & Cancer, 62, 1058-1060. https://doi.org/10.1002/pbc.25327
 | 
                     
                                
                                    
                                        | [25] | Zhang, G., Zhang, Y.L., Wu, J.R., Chen, Y. and Ma, Z.G. (2017) Acute Lymphoblastic Leukemia Patient with Variant ATF7IP/PDGFRB Fusion and Favorable Response to Tyrosine Kinase Inhibitor Treatment: A Case Report. American Journal of Case Re-ports, 18, 1204-1208. https://doi.org/10.12659/AJCR.906300
 | 
                     
                                
                                    
                                        | [26] | Reshmi, S.C., Harvey, R.C., Roberts, K.G., et al. (2017) Targetable Kinase Gene Fusions in High-Risk B-ALL: A Study from the Children’s Oncology Group. Blood, 129, 3352-3361. https://doi.org/10.1182/blood-2016-12-758979
 | 
                     
                                
                                    
                                        | [27] | Sundaresh, A. and Williams, O. (2017) Mechanism of ETV6-RUNX1 Leukemia. Advances in Experimental Medicine and Biology, 962, 201-216. https://doi.org/10.1007/978-981-10-3233-2_13
 | 
                     
                                
                                    
                                        | [28] | Shurtleff, S.A., Buijs, A., Behm, F.G., Rubnitz, J.E., Raimon-di, S.C., Hancock, M.L., et al. (1995) TEL/AML1 Fusion Resulting from a Cryptic t(12;21) Is the Most Common Ge-netic Lesion in Pediatric ALL and Defines a Subgroup of Patients with an Excellent Prognosis. Leukemia, 9, 1985-1989. | 
                     
                                
                                    
                                        | [29] | Rubnitz, J.E., Wichlan, D., Devidas, M., Shuster, J., Linda, S.B., Kurtzberg, J., et al. (2008) Prospec-tive Analysis of TEL Gene Rearrangements in Childhood Acute Lymphoblastic Leukemia: A Children’s Oncology Group Study. Journal of Clinical Oncology, 26, 2186-2191. https://doi.org/10.1200/JCO.2007.14.3552
 | 
                     
                                
                                    
                                        | [30] | Andreasson, P., Schwaller, J., Anastasiadou, E., Aster, J. and Gil-liland, D.G. (2001) The Expression of ETV6/CBFA2 (TEL/AML1) Is Not Sufficient for the Transformation of Hema-topoietic Cell Lines in Vitro or the Induction of Hematologic Disease in Vivo. Cancer Genetics and Cytogenetics, 130, 93-104. https://doi.org/10.1016/S0165-4608(01)00518-0
 | 
                     
                                
                                    
                                        | [31] | Morrow, M., Horton, S., Kioussis, D., Brady, H.J.M. and Williams, O. (2004) TEL-AML1 Promotes Development of Specific Hematopoietic Lineages Consistent with Preleuke-mic Activity. Blood, 103, 3890-3896. https://doi.org/10.1182/blood-2003-10-3695
 | 
                     
                                
                                    
                                        | [32] | Cavé, H., Cacheux, V., Raynaud, S., Brunie, G., Bakkus, M., Cochaux, P., et al. (1997) ETV6 Is the Target of Chromosome 12p Deletions in t(12;21) Childhood Acute Lymphocytic Leukemia. Leukemia, 11, 1459-1464. https://doi.org/10.1038/sj.leu.2400798
 | 
                     
                                
                                    
                                        | [33] | McLean, T.W., Ringold, S., Neuberg, D., Stegmaier, K., Tantravahi, R., Ritz, J., et al. (1996) TEL/AML-1 Dimerizes and Is Associated with a Favorable Outcome in Childhood Acute Lympho-blastic Leukemia. Blood, 88, 4252-4258. https://doi.org/10.1182/blood.V88.11.4252.bloodjournal88114252
 | 
                     
                                
                                    
                                        | [34] | 王邢玮, 李本尚, 沈树红, 陈静, 汤静燕, 等. ETV6/RUNX1阳性儿童急性B系淋巴细胞白血病临床预后研究[J]. 临床儿科杂志, 2016, 34(5): 321-325. | 
                     
                                
                                    
                                        | [35] | Wang, Y., Zeng, H.-M. and Zhang, L.-P. (2018) ETV6/RUNX1-Positive Childhood Acute Lympho-blastic Leukemia in China: Excellent Prognosis with Improved BFM Protocol. Italian Journal of Pediatrics, 44, 94. https://doi.org/10.1186/s13052-018-0541-6
 | 
                     
                                
                                    
                                        | [36] | Gu, Z.H., Churchman, M.L., Roberts, K.G., Moore, I., Zhou, X., Nakitandwe, J., et al. (2019) PAX5-Driven Subtypes of B-Progenitor Acute Lymphoblastic Leukemia. Nature Genetics, 51, 296-307. https://doi.org/10.1038/s41588-018-0315-5
 | 
                     
                                
                                    
                                        | [37] | Jeha, S., Choi, J., Roberts, K.G., Pei, D.Q., Coustan-Smith, E., Inaba, H., et al. (2021) Clinical Significance of Novel Subtypes of Acute Lymphoblastic Leukemia in the Context of Minimal Residual Disease-Directed Therapy. Blood Cancer Discovery, 2, 326-337. https://doi.org/10.1158/2643-3230.BCD-20-0229
 | 
                     
                                
                                    
                                        | [38] | Lee, S.H.R., Li, Z.H., Tai, S.T., Oh, B.L.Z. and Yeoh, A.E.J. (2021) Genetic Alterations in Childhood Acute Lymphoblastic Leukemia: Interactions with Clinical Features and Treatment Response. Cancers (Basel), 13, 4068. https://doi.org/10.3390/cancers13164068
 | 
                     
                                
                                    
                                        | [39] | Winters, A.C. and Bernt, K.M. (2017) MLL-Rearranged Leukemi-as—An Update on Science and Clinical Approaches. Frontiers in Pediatrics, 5, 4. https://doi.org/10.3389/fped.2017.00004
 | 
                     
                                
                                    
                                        | [40] | Jansen, M.W.J.C., Corral, L., van der Velden, V.H.J., Pan-zer-Grümayer, R., Schrappe, M., Schrauder, A., et al. (2007) Immunobiological Diversity in Infant Acute Lymphoblastic Leukemia Is Related to the Occurrence and Type of MLL Gene Rearrangement. Leukemia, 21, 633-641. https://doi.org/10.1038/sj.leu.2404578
 | 
                     
                                
                                    
                                        | [41] | Andersson, A.K., Ma, J., Wang, J.M., Chen, X., Gedman, A.L., Dang, J.J., et al. (2015) The Landscape of Somatic mutations in Infant MLL-Rearranged Acute Lymphoblastic Leukemias. Na-ture Genetics, 47, 330-337. https://doi.org/10.1038/ng.3230
 | 
                     
                                
                                    
                                        | [42] | Tauchi, H., Tomizawa, D., Eguchi, M., et al. (2008) Clinical Features and Outcome of MLL Gene Rearranged Acute Lymphoblastic Leukemia in Infants with Additional Chromosomal Abnormal-ities Other than 11q23 Translocation. Leukemia Research, 32, 1523-1529. https://doi.org/10.1016/j.leukres.2008.03.018
 | 
                     
                                
                                    
                                        | [43] | Chen, C.-W., Koche, R.P., Sinha, A.U., Deshpande, A.J., Zhu, N., Eng, R., et al. (2015) DOT1L Inhibits SIRT1-Mediated Epigenetic Silencing to Maintain Leukemic Gene Expression in MLL-Rearranged Leukemia. Nature Medicine, 21, 335-343. https://doi.org/10.1038/nm.3832
 | 
                     
                                
                                    
                                        | [44] | Klossowski, S., Miao, H.Z., Kempinska, K., Wu, T., Purohit, T., Kim, E., et al. (2020) Menin Inhibitor MI-3454 Induces Remission in MLL1-Rearranged and NPM1-Mutated Models of Leukemia. Journal of Clinical Investigation, 130, 981-997. https://doi.org/10.1172/JCI129126
 | 
                     
                                
                                    
                                        | [45] | Aspland, S.E., Bendall, H.H. and Murre, C. (2001) The Role of E2A-PBX1 in Leukemogenesis. Oncogene, 20, 5708- 5717. https://doi.org/10.1038/sj.onc.1204592
 | 
                     
                                
                                    
                                        | [46] | Diakos, C., Xiao, Y.Y., Zheng, S.C., Kager, L., Dworzak, M. and Wiemels, J.L. (2014) Direct and Indirect Targets of the E2A-PBX1 Leukemia-Specific Fusion Protein. PLOS ONE, 9, e87602. https://doi.org/10.1371/journal.pone.0087602
 | 
                     
                                
                                    
                                        | [47] | Jeha, S., Pei, D., Raimondi, S.C., Onciu, M., Campana, D., Cheng, C., et al. (2009) Increased Risk for CNS Relapse in Pre-B Cell Leukemia with the t(1;19)/TCF3-PBX1. Leuke-mia, 23, 1406-1409. https://doi.org/10.1038/leu.2009.42
 | 
                     
                                
                                    
                                        | [48] | Bicocca, V.T., Chang, B.H., Masouleh, B.K., Mus-chen, M., Loriaux, M.M., Druker, B.J., et al. (2012) Crosstalk between ROR1 and the Pre-B Cell Receptor Promotes Survival of t(1;19) Acute Lymphoblastic Leukemia. Cancer Cell, 22, 656-667. https://doi.org/10.1016/j.ccr.2012.08.027
 | 
                     
                                
                                    
                                        | [49] | Crist, W.M., Carroll, A.J., Shuster, J.J., Behm, F.G., Whitehead, M., Vietti, T.J., et al. (1990) Poor Prognosis of Children with pre-B Acute Lymphoblastic Leukemia Is Associated with the t(1;19)(q23;p13): A Pediatric Oncology Group Study. Blood, 76, 117-122. https://doi.org/10.1182/blood.V76.1.117.117
 | 
                     
                                
                                    
                                        | [50] | Lin, A., Cheng, F.W.T., Chiang, A.K.S., Luk, C.-W., Li, R.C.H., Ling, A.S.C., et al. (2018) Excellent Outcome of Acute Lymphoblastic Leukaemia with TCF3-PBX1 Rearrangement in Hong Kong. Pediatric Blood & Cancer, 65, e27346. https://doi.org/10.1002/pbc.27346
 | 
                     
                                
                                    
                                        | [51] | Wang, Y., Xue, Y.-J., Lu, A.-D., Jia, Y.-P., Zuo, Y.-X., Zhang, L.-P., et al. (2021) Long-Term Results of the Risk- Stratified Treatment of TCF3-PBX1-Positive Pediatric Acute Lymphoblastic Leukemia in China. Clinical Lymphoma, Myeloma and Leukemia, 21, e137-e144. https://doi.org/10.1016/j.clml.2020.09.009
 | 
                     
                                
                                    
                                        | [52] | Fischer, U., Forster, M., Rinaldi, A., Risch, T., Sungalee, S., Warnatz, H.-J., et al. (2015) Genomics and Drug Profiling of Fatal TCF3-HLF-Positive Acute Lymphoblastic Leukemia Identifies Recurrent Mutation Patterns and Therapeutic Options. Nature Genetics, 47, 1020-1029. https://doi.org/10.1038/ng.3362
 | 
                     
                                
                                    
                                        | [53] | Kachroo, P., Szymczak, S., Heinsen, F.-A., Forster, M., Bethune, J., Hemmrich-Stanisak, G., et al. (2018) NGS-Based Methylation Profiling Differentiates TCF3-HLF and TCF3-PBX1 Positive B-Cell Acute Lymphoblastic Leukemia. Epigenomics, 10, 133-147. https://doi.org/10.2217/epi-2017-0080
 | 
                     
                                
                                    
                                        | [54] | Wang, T.Y., Wan, X.Y., Yang, F., Shi, W.H., Liu, R., Ding, L.X., et al. (2021) Successful Treatment of TCF3-HLF- Positive Childhood B-ALL with Chimeric Antigen Receptor T-Cell Therapy. Clinical Lymphoma, Myeloma and Leukemia, 21, 386-392. https://doi.org/10.1016/j.clml.2021.01.014
 | 
                     
                                
                                    
                                        | [55] | Stanulla, M., Cavé, H. and Moorman, A.V. (2020) IKZF1 Dele-tions in Pediatric Acute Lymphoblastic Leukemia: Still a Poor Prognostic Marker? Blood, 135, 252-260. https://doi.org/10.1182/blood.2019000813
 | 
                     
                                
                                    
                                        | [56] | Marke, R., van Leeuwen, F.N. and Scheijen, B. (2018) The Many Faces of IKZF1 in B-Cell Precursor Acute Lymphoblastic Leukemia. Haematologica, 103, 565-574. https://doi.org/10.3324/haematol.2017.185603
 | 
                     
                                
                                    
                                        | [57] | Joshi, I., Yoshida, T., Jena, N., et al. (2014) Loss of Ikaros DNA-Binding Function Confers Integrin-Dependent Survival on pre-B Cells and Progression to Acute Lymphoblastic Leukemia. Nature Immunology, 15, 294-304. https://doi.org/10.1038/ni.2821
 | 
                     
                                
                                    
                                        | [58] | van der Veer, A., Zaliova, M., Mottadelli, F., De Lorenzo, P., Te Kronnie, G., Harrison, C.J., et al. (2014) IKZF1 Status as a Prognostic Feature in BCR-ABL1-Positive Childhood All. Blood, 123, 1691-1698. https://doi.org/10.1182/blood-2013-06-509794
 | 
                     
                                
                                    
                                        | [59] | Sulong, S., Moorman, A.V., Irving, J.A.E., Strefford, J.C., Konn, Z.J., Case, M.C., et al. (2009) A Comprehensive Analysis of the CDKN2A Gene in Childhood Acute Lympho-blastic Leukemia Reveals Genomic Deletion, Copy Number Neutral Loss of Heterozygosity, and Association with Spe-cific Cytogenetic Subgroups. Blood, 113, 100-107. https://doi.org/10.1182/blood-2008-07-166801
 | 
                     
                                
                                    
                                        | [60] | Stanulla, M., Dagdan, E., Zaliova, M., Möricke, A., Palmi, C., Cazzaniga, G., et al. (2018) IKZF1(plus) Defines a New Minimal Residual Disease-Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 36, 1240-1249. https://doi.org/10.1200/JCO.2017.74.3617
 | 
                     
                                
                                    
                                        | [61] | Piovan, E., Yu, J.Y., Tosello, V., Herranz, D., Ambe-si-Impiombato, A., Carolina Da Silva, A., et al. (2013) Direct Reversal of Glucocorticoid Resistance by AKT Inhibition in Acute Lymphoblastic Leukemia. Cancer Cell, 24, 766-776. https://doi.org/10.1016/j.ccr.2013.10.022
 | 
                     
                                
                                    
                                        | [62] | Shahjahani, M., Norozi, F., Ahmadzadeh, A., Shahrabi, S., Tavakoli, F., Asnafi, A.A., et al. (2015) The Role of Pax5 in Leukemia: Diagnosis and Prognosis Significance. Medical Oncology, 32, 360. https://doi.org/10.1007/s12032-014-0360-6
 | 
                     
                                
                                    
                                        | [63] | Novakova, M., Zaliova, M., Fiser, K., Vakrmanova, B., Slamova, L., Musilova, A., et al. (2021) DUX4r, ZNF384r and PAX5-P80R Mutated B-Cell Precursor Acute Lymphoblastic Leukemia Frequently Undergo Monocytic Switch. Haematologica, 106, 2066-2075. https://doi.org/10.3324/haematol.2020.250423
 | 
                     
                                
                                    
                                        | [64] | Li, J.F., Dai, Y.T., Wu, L., Zhang, M., Ouyang, W., Huang, J.Y., et al. (2021) Emerging Molecular Subtypes and Therapeutic Targets in B-Cell Precursor Acute Lymphoblastic Leu-kemia. Frontiers in Medicine, 15, 347-371. https://doi.org/10.1007/s11684-020-0821-6
 | 
                     
                                
                                    
                                        | [65] | Zhang, W.H., Kuang, P. and Liu, T. (2019) Prognostic Signifi-cance of CDKN2A/B Deletions in Acute Lymphoblastic Leukaemia: A Meta-Analysis. Annals of Medicine, 51, 28-40. https://doi.org/10.1080/07853890.2018.1564359
 | 
                     
                                
                                    
                                        | [66] | Agarwal, M., Bakhshi, S., Dwivedi, S.N., et al. (2018) Cy-clin Dependent Kinase Inhibitor 2A/B Gene Deletions Are Markers of Poor Prognosis in Indian Children with Acute Lymphoblastic Leukemia. Pediatric Blood & Cancer, 65, e27001. https://doi.org/10.1002/pbc.27001
 | 
                     
                                
                                    
                                        | [67] | Kathiravan, M., Singh, M., Bhatia, P., Trehan, A., Varma, N., Sachdeva, M.S., et al. (2019) Deletion of CDKN2A/B Is Associated with Inferior Relapse Free Survival in Pediatric B Cell Acute Lymphoblastic Leukemia. Leukemia & Lymphoma, 60, 433-441. https://doi.org/10.1080/10428194.2018.1482542
 | 
                     
                                
                                    
                                        | [68] | Karrman, K., Castor, A., Behrendtz, M., et al. (2015) Deep Sequencing and SNP Array Analyses of Pediatric T-Cell Acute Lymphoblastic Leukemia Reveal NOTCH1 Mutations in Minor Subclones and a High Incidence of Uniparental Isodisomies Affecting CDKN2A. Journal of Hematology Oncol-ogy, 8, 42. https://doi.org/10.1186/s13045-015-0138-0
 | 
                     
                                
                                    
                                        | [69] | Steeghs, E.M.P., Boer, J.M., Hoogkamer, A.Q., Boeree, A., de Haas, V., de Groot-Kruseman, H.A., et al. (2019) Copy Number Alterations in B-Cell Development Genes, Drug Resistance, and Clinical Outcome in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Scientific Reports, 9, 4634. https://doi.org/10.1038/s41598-019-41078-4
 | 
                     
                                
                                    
                                        | [70] | Feng, J., Guo, Y., Yang, W.Y., Zou, Y., Zhang, L., Chen, Y.M., et al. (2022) Childhood Acute B-Lineage Lymphoblastic Leukemia with CDKN2A/B Deletion Is a Distinct Entity with Adverse Genetic Features and Poor Clinical Outcomes. Frontiers in Oncology, 12, Article ID: 878098. https://doi.org/10.3389/fonc.2022.878098
 | 
                     
                                
                                    
                                        | [71] | Kim, M.Y., Yim, S.-H., Cho, N.-S., Kang, S.-H., Ko, D.-H., Oh, B., et al. (2009) Homozygous Deletion of CDKN2A (p16, p14) and CDKN2B (p15) Genes Is a Poor Prog-nostic Factor in Adult but Not in Childhood B-Lineage Acute Lymphoblastic Leukemia: A Comparative Deletion and Hypermethylation Study. Cancer Genetics and Cytogenetics, 195, 59-65. https://doi.org/10.1016/j.cancergencyto.2009.06.013
 | 
                     
                                
                                    
                                        | [72] | Salas, P.C., Fernández, L., Vela, M., Bueno, D., Gonzá-lez, B., Valentín, J., et al. (2016) The Role of CDKN2A/B Deletions in Pediatric Acute Lymphoblastic Leukemia. Pediat-ric Hematology and Oncology, 33, 415-422. https://doi.org/10.1080/08880018.2016.1251518
 | 
                     
                                
                                    
                                        | [73] | Sawai, C.M., Freund, J., Oh, P., Ndiaye-Lobry, D., Bretz, J.C, Strikoudis, A., et al. (2012) Therapeutic Targeting of the Cyclin D3:CDK4/6 Complex in T Cell Leukemia. Cancer Cell, 22, 452-465. https://doi.org/10.1016/j.ccr.2012.09.016
 | 
                     
                                
                                    
                                        | [74] | Sheppard, K.E. and McArthur, G.A. (2013) The Cell-Cycle Regulator CDK4: An Emerging Therapeutic Target in Melanoma. Clinical Cancer Research, 19, 5320-5328. https://doi.org/10.1158/1078-0432.CCR-13-0259
 | 
                     
                                
                                    
                                        | [75] | Dickson, M.A. (2014) Molecular Pathways: CDK4 Inhibi-tors for Cancer Therapy. Clinical Cancer Research, 20, 3379-3383. https://doi.org/10.1158/1078-0432.CCR-13-1551
 |