|
[1]
|
Kuppe, C., Leuchtle, K., Wagner, A., et al. (2019) Novel Parietal Epithelial Cell Subpopulations Contribute to Focal Segmental Glomer-ulosclerosis and Glomerular Tip Lesions. Kidney International, 96, 80-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bronstein, R., Pace, J., Gowthaman, Y., et al. (2023) Podocyte-Parietal Epithelial Cell Interdependence in Glomerular Development and Disease. Journal of the American Society of Nephrology. [Google Scholar] [CrossRef]
|
|
[3]
|
Miesen, L., Steenbergen, E. and Smeets, B. (2017) Parietal Cells-New Perspectives in Glomerular Disease. Cell and Tissue Research, 369, 237-244. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ohse, T., Pippin, J.W., Chang, A.M., et al. (2009) The Enigmatic Parietal Epi-thelial Cell Is Finally Getting Noticed: A Review. Kidney International, 76, 1225-1238. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wong, M.N., Tharaux, P.L., Grahammer, F., et al. (2021) Parietal Epithelial Cell Dys-function in Crescentic Glomerulonephritis. Cell and Tissue Research, 385, 345-354. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Shankland, S.J., Smeets, B., Pippin, J.W., et al. (2014) The Emergence of the Glomerular Parietal Epithelial Cell. Nature Reviews Nephrology, 10, 158-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shankland, S.J., Freedman, B.S. and Pippin, J.W. (2017) Can Podocytes Be Regener-ated in Adults? Current Opinion in Nephrology and Hypertension, 26, 154-164. [Google Scholar] [CrossRef]
|
|
[8]
|
Ni, L., Yuan, C. and Wu, X. (2021) The Recruitment Mechanisms and Potential Therapeutic Targets of Podocytes from Parietal Epithelial Cells. Journal of Translational Medicine, 19, 441. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Smeets, B. and Moeller, M.J. (2012) Parietal Epithelial Cells and Podocytes in Glomerular Diseases. Seminars in Nephrology, 32, 357-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ohse, T., Chang, A.M., Pippin, J.W., et al. (2009) A New Function for Parietal Epithelial Cells: A Second Glomerular Barrier. American Journal of Physiology-Renal Physiology, 297, F1566-F1574. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Poulsom, R. and Little, M.H. (2009) Parietal Epithelial Cells Regenerate Podo-cytes. Journal of the American Society of Nephrology, 20, 231-233. [Google Scholar] [CrossRef]
|
|
[12]
|
Kaverina, N.V., Eng, D.G., Freedman, B.S., et al. (2019) Dual Lineage Tracing Shows That Glomerular Parietal Epithelial Cells Can Transdif-ferentiate toward the Adult Podocyte Fate. Kidney International, 96, 597-611. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gaut, J.P., Hoshi, M., Jain, S., et al. (2014) Claudin 1 and Nephrin Label Cellular Crescents in Diabetic Glomerulosclerosis. Human Pathology, 45, 628-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ronconi, E., Sagrinati, C., Angelotti, M.L., et al. (2009) Regeneration of Glomerular Podocytes by Human Renal Progenitors. Journal of the American Society of Nephrology, 20, 322-332. [Google Scholar] [CrossRef]
|
|
[15]
|
丛月, 顾乐怡, 戴慧莉. 肾小球壁层上皮细胞在肾小球疾病发生发展中的作用[J]. 中国中西医结合肾病杂志, 2021, 22(2): 180-182.
|
|
[16]
|
Su, H., Chen, S., He, F.F., et al. (2015) New Insights into Glomerular Parietal Epithelial Cell Activation and Its Signaling Pathways in Glomerular Diseases. BioMed Research International, 2015, Article ID: 318935. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hamatani, H., Eng, D.G., Hiromura, K., et al. (2020) CD44 Impacts Glomerular Parie-tal Epithelial Cell Changes in the Aged Mouse Kidney. Physiological Reports, 8, e14487. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhao, X., Chen, X., Chima, A., et al. (2019) Albumin Induces CD44 Expression in Glomerular Parietal Epithelial Cells by Activating Extracellular Signal-Regulated Kinase 1/2 Pathway. Journal of Cellular Physiology, 234, 7224-7235. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Eymael, J., Sharma, S., Loeven, M.A., et al. (2018) CD44 Is Required for the Pathogene-sis of Experimental Crescentic Glomerulonephritis and Collapsing Focal Segmental Glomerulosclerosis. Kidney International, 93, 626-642. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ito, N., Sakamoto, K., Hikichi, C., et al. (2020) Biphasic MIF and SDF1 Expres-sion during Podocyte Injury Promote CD44-Mediated Glomerular Parietal Cell Migration in Focal Segmental Glomerulosclerosis. American Journal of Physiology-Renal Physiology, 318, F741-F753. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Smeets, B., Stucker, F., Wetzels, J., et al. (2014) Detection of Activated Parietal Epithelial Cells on the Glomerular Tuft Distinguishes Early Focal Segmental Glomerulosclerosis from Minimal Change Disease. The American Journal of Pathology, 184, 3239-3248. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kitching, A.R. and Hutton, H.L. (2016) The Players: Cells Involved in Glomer-ular Disease. Clinical Journal of the American Society of Nephrology, 11, 1664-1674. [Google Scholar] [CrossRef]
|
|
[23]
|
Chan, G.C., Eng, D.G., Miner, J.H., et al. (2019) Differential Expression of Parietal Epithelial Cell and Podocyte Extracellular Matrix Proteins in Focal Segmental Glomerulosclerosis and Diabetic Nephropathy. American Journal of Physiology-Renal Physiology, 317, F1680-F1694. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Huang, Y., Zhao, X., Zhang, Q., et al. (2023) Novel Therapeutic Perspectives for Crescentic Glomerulonephritis through Targeting Parietal Epithelial Cell Activation and Proliferation. Expert Opinion on Therapeutic Targets, 27, 55-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Koda, R., Yoshino, A., Imanishi, Y., et al. (2014) Expression of Tight Junction Protein Claudin-1 in Human Crescentic Glomerulonephritis. International Journal of Nephrology, 2014, Article ID: 598670. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Moeller, M.J. and Smeets, B. (2014) Role of Parietal Epithelial Cells in Kidney Injury: The Case of Rapidly Progressing Glomerulonephritis and Focal and Segmental Glomerulosclerosis. Nephron Experimental Nephrology, 126, 97. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Miesen, L., Bándi, P., Willemsen, B., et al. (2022) Parietal Epithelial Cells Maintain the Epithelial Cell Continuum Forming Bowman’s Space in Focal Segmental Glomerulosclerosis. Disease Models & Mechanisms, 15, dmm046342. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sun, K., Xie, Q. and Hao, C.M. (2021) Mechanisms of Scarring in Focal Segmental Glomerulosclerosis. Kidney Disease (Basel), 7, 350-358. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhong, J., Whitman, J.B., Yang, H.C., et al. (2019) Mechanisms of Scarring in Focal Segmental Glomerulosclerosis. Journal of Histochemistry & Cytochemistry, 67, 623-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, Z.H., Guo, X.Y., Quan, X.Y., et al. (2022) The Role of Parietal Epithelial Cells in the Pathogenesis of Podocytopathy. Frontiers in Physiology, 13, Article ID: 832772. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Fatima, H., Moeller, M.J., Smeets, B., et al. (2012) Parietal Epithelial Cell Acti-vation Marker in Early Recurrence of FSGS in the Transplant. Clinical Journal of the American Society of Nephrology, 7, 1852-1858. [Google Scholar] [CrossRef]
|
|
[32]
|
Schneider, R.R., Eng, D.G., Kutz, J.N., et al. (2017) Compound Effects of Aging and Experimental FSGS on Glomerular Epithelial Cells. Aging (Albany NY), 9, 524-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kawaguchi, T., Hasegawa, K., Yasuda, I., et al. (2021) Diabetic Condition Induces Hypertrophy and Vacuolization in Glomerular Parietal Epithelial Cells. Scientific Reports, 11, 1515. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Holderied, A., Romoli, S., Eberhard, J., et al. (2015) Glomerular Parietal Epi-thelial Cell Activation Induces Collagen Secretion and Thickening of Bowman’s Capsule in Diabetes. Laboratory Investigation, 95, 273-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sicking, E.M., Fuss, A., Uhlig, S., et al. (2012) Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation. Journal of the American Society of Nephrology, 23, 629-640. [Google Scholar] [CrossRef]
|
|
[36]
|
Ohse, T., Vaughan, M.R., Kopp, J.B., et al. (2010) De Novo Expression of Po-docyte Proteins in Parietal Epithelial Cells during Experimental Glomerular Disease. American Journal of Physiology-Renal Physiology, 298, F702-F711. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Mckinney, C.A., Fattah, C., Loughrey, C.M., et al. (2014) Angiotensin-(1-7) and Angiotensin-(1-9) Function in Cardiac and Vascular Remodelling. Clinical Science (London), 126, 815-827. [Google Scholar] [CrossRef]
|
|
[38]
|
赵雪茹, 黄岩杰, 杨晓青, 等. 参与肾小球壁层上皮细胞活化和表型转化的信号通路[J]. 肾脏病与透析肾移植杂志, 2020, 29(2): 165-170.
|
|
[39]
|
Benigni, A., Morigi, M., Rizzo, P., et al. (2011) Inhibiting Angio-tensin-Converting Enzyme Promotes Renal Repair by Limiting Progenitor Cell Proliferation and Restoring the Glomerular Architecture. The American Journal of Pathology, 179, 628-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Cassis, P., Zoja, C., Perico, L., et al. (2019) A Preclinical Overview of Emerging Therapeutic Targets for Glomerular Diseases. Expert Opinion on Therapeutic Targets, 23, 593-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Bollee, G., Flamant, M., Schordan, S., et al. (2011) Epidermal Growth Factor Receptor Promotes Glomerular Injury and Renal Failure in Rapidly Progressive Crescentic Glomerulonephri-tis. Nature Medicine, 17, 1242-1250. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wu, X., Ren, L., Yang, Q., et al. (2022) Glucocorticoids Inhibit EGFR Signaling Activation in Podocytes in Anti-GBM Crescentic Glomerulonephritis. Frontiers in Medicine (Lausanne), 9, Article ID: 697443. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Mukherjee, M., Fogarty, E., Janga, M., et al. (2019) Notch Signaling in Kidney Development, Maintenance, and Disease. Biomolecules, 9, 692. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ueno, T., Kobayashi, N., Nakayama, M., et al. (2013) Aberrant Notch1-Dependent Effects on Glomerular Parietal Epithelial Cells Promotes Collapsing Focal Segmental Glomerulosclerosis with Progressive Podocyte Loss. Kidney International, 83, 1065-1075. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chen, L.H., Advani, S.L., Thai, K., et al. (2014) SDF-1/CXCR4 Signaling Preserves Microvascular Integrity and Renal Function in Chronic Kidney Disease. PLOS ONE, 9, e92227. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhang, J., Yanez, D., Floege, A., et al. (2015) ACE-Inhibition Increases Po-docyte Number in Experimental Glomerular Disease Independent of Proliferation. Journal of the Renin-Angiotensin-Aldosterone System, 16, 234-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Roeder, S.S., Barnes, T.J., Lee, J.S., et al. (2017) Activated ERK1/2 Increases CD44 in Glomerular Parietal Epithelial Cells Leading to Matrix Expansion. Kidney International, 91, 896-913. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Smeets, B., Miesen, L. and Shankland, S.J. (2020) CD9 Is a Novel Target in Glomerular Diseases Typified by Parietal Epithelial Cell Activation. American Journal of Kidney Diseases, 75, 812-814. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ye, C., Xiong, W., Lei, C.T., et al. (2020) MAD2B Contributes to Parietal Epi-thelial Cell Activation and Crescentic Glomerulonephritis via Skp2. American Journal of Physiology-Renal Physiology, 319, F636-F646. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Andeen, N.K., Nguyen, T.Q., Steegh, F., et al. (2015) The Phenotypes of Po-docytes and Parietal Epithelial Cells May Overlap in Diabetic Nephropathy. Kidney International, 88, 1099-1107. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Kietzmann, L., Guhr, S.S., Meyer, T.N., et al. (2015) MicroRNA-193a Regulates the Transdifferentiation of Human Parietal Epithelial Cells toward a Podocyte Phenotype. Journal of the American Society of Nephrology, 26, 1389-1401. [Google Scholar] [CrossRef]
|
|
[52]
|
Bharati, J., Chander, P.N. and Singhal, P.C. (2023) Parietal Epithelial Cell Be-havior and Its Modulation by microRNA-193a. Biomolecules, 13, 266. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Pace, J.A., Bronstein, R., Guo, Y., et al. (2021) Podocyte-Specific KLF4 Is Required to Maintain Parietal Epithelial Cell Quiescence in the KIDNEY. Science Advances, 7, eabg6600. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Kurayama, R., Ito, N., Nishibori, Y., et al. (2011) Role of Amino Acid Transporter LAT2 in the Activation of mTORC1 Pathway and the Pathogenesis of Crescentic Glomerulo-nephritis. Laboratory Investigation, 91, 992-1006. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Burnworth, B., Pippin, J., Karna, P., et al. (2012) SSeCKS Sequesters Cyclin D1 in Glomerular Parietal Epithelial Cells and Influences Proliferative Injury in the Glomerulus. Laboratory Investigation, 92, 499-510. [Google Scholar] [CrossRef] [PubMed]
|