学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
应用数学进展
Vol. 12 No. 4 (April 2023)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
一类色散半群的基本估计
Basic Estimates for a Class of Dispersive Semigroups
DOI:
10.12677/AAM.2023.124187
,
PDF
,
HTML
,
,
被引量
作者:
黄慧文
:浙江师范大学数学科学学院,浙江 金华
关键词:
“Stationary Set”估计
;
振荡积分
;
L
p'
- L
p
估计
;
“Stationary Set”Estimate
;
Oscillation Integral
;
L
p'
- L
p
Estimates
摘要:
本文通过Zhang得到的估计振荡积分方法研究了色散半群 F
−1
e
i[xξ+(ξn+ξ)t]
F 在n 为奇数且有界时 的一维衰减估计问题, 展示了该振荡积分估计方法在研究半群衰减问题中的重要性.
Abstract:
In this paper, we study the problem of one-dimensional attenuation estimation of dis-persion semigroups
F
−1
e
i[xξ+(ξn+ξ)t]
F
when n is odd and bounded by using the estimated oscillatory integration method obtained by Zhang. The importance of the estimated oscillatory integration method in the study of semigroup attenuation is demonstrated.
文章引用:
黄慧文. 一类色散半群的基本估计[J]. 应用数学进展, 2023, 12(4): 1804-1809.
https://doi.org/10.12677/AAM.2023.124187
参考文献
[1]
Strichartz, R.S. (1977) Restrictions of Fourier Transforms to Quadratic Surfaces and Decay of Solutions of Wave Equations. Duke Mathematical Journal, 44, 705-714.
https://doi.org/10.1215/S0012-7094-77-04430-1
[2]
Ben-Artzi, M. and Treves, F. (1994) Uniform Estimates for a Class of Evolution Equations. Journal of Functional Analysis, 120, 264-299.
https://doi.org/10.1006/jfan.1994.1033
[3]
Ben-Artzi, M. and Saut, J.-C. (1999) Uniform Decay Estimates for a Class of Oscillatory Integrals and Applications. Differential Integral Equations, 12, 137-145.
https://doi.org/10.57262/die/1367265625
[4]
Cui, S. and Tao, S. (2005) Strichartz Estimates for Dispersive Equations and Solvability of the Kawahara Equation. Journal of Mathematical Analysis and Applications, 304, 683-702.
https://doi.org/10.1016/j.jmaa.2004.09.049
[5]
Kenig, C.E., Ponce, G. and Vega, L. (1991) Oscillatory Integrals and Regularity of Dispersive Equations. Indiana University Mathematics Journal, 40, 33-69.
https://doi.org/10.1512/iumj.1991.40.40003
[6]
Kenig, C.E., Ponce, G. and Vega, L. (1989) On the (Generalized) Korteweg-de Vries Equations. Duke Mathematical Journal, 59, 585-610.
https://doi.org/10.1215/S0012-7094-89-05927-9
[7]
Wang, B., Huo, Z., Hao, C. and Guo, Z. (2011) Harmonic Analysis Method for Nonlinear Evolution Equations, I. World Scientific, Singapore, Hackensack, NJ.
https://doi.org/10.1142/8209
[8]
Basu, S., Guo, S., Zhang, R. and Zorin-Kranich, P. (2021) A Stationary Set Method for Estimating Oscillatory Integrals. arXiv preprint arXiv:2103.08844
投稿
为你推荐
友情链接
科研出版社
开放图书馆