|
[1]
|
Cho, N.H., Shaw, J.E., Karuranga, S., et al. (2018) IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Research and Clinical Practice, 138, 271-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sun, H., Saeedi, P., Karuranga, S., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wagner, L., Oliyarnyk, O., Gartner, W., et al. (2000) Cloning and Expression of Secretagogin, a Novel Neuroendocrine- and Pancreatic Islet of Langerhans-Specific Ca2+-Binding Protein. Journal of Biological Chemistry, 275, 24740- 24751. [Google Scholar] [CrossRef]
|
|
[4]
|
Tan, W.S.D., Lee, J.J., Satish, R.L., et al. (2012) Detectability of Secretagogin in Human Erythrocytes. Neuroscience Letters, 526, 59-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zierhut, B., Daneva, T., Gartner, W., et al. (2005) Setagin and Secretagogin-R22: Posttranscriptional Modification Products of the Secretagogin Gene. Biochemical and Bi-ophysical Research Communications, 329, 1193-1199. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lai, M., Lü, B., Xing, X., et al. (2006) Secretagogin, a Novel Neuroendocrine Marker, Has a Distinct Expression Pattern from Chromogranin A. Virchows Archiv, 449, 402-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Puthussery, T., Gayet-Primo, J. and Taylor, W.R. (2010) Locali-zation of the Calcium-Binding Protein Secretagogin in Cone Bipolar Cells of the Mammalian Retina. Journal of Compar-ative Neurology, 518, 513-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Berggård, T., Miron, S., Onnerfjord, P., et al. (2002) Calbindin D28k Ex-hibits Properties Characteristic of a Ca2+ Sensor. Journal of Biological Chemistry, 277, 16662-16672. [Google Scholar] [CrossRef]
|
|
[9]
|
Schwaller, B., Durussel, I., Jermann, D., et al. (1997) Comparison of the Ca2+-Binding Properties of Human Recombinant Calretinin-22k and Calretinin. Journal of Biological Chemistry, 272, 29663-29671. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lee, J.J., Yang, S.Y., Park, J., et al. (2017) Calcium Ion Induced Structural Changes Promote Dimerization of Secretagogin, Which Is Required for Its Insulin Secretory Function. Scien-tific Reports, 7, Article No. 6976. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Rorsman, P., Eliasson, L., Renstrom, E., et al. (2000) The Cell Physiology of Biphasic Insulin Secretion. Physiology, 15, 72-77. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Rorsman, P. and Renström, E. (2003) Insulin Granule Dynamics in Pancreatic Beta Cells. Diabetologia, 46, 1029-1045. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Nevins, A.K. and Thurmond, D.C. (2003) Glucose Regulates the Cortical Actin Network through Modulation of Cdc42 Cycling to Stimulate Insulin Secretion. American Journal of Physiology-Cell Physiology, 285, C698-C710. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Henquin, J.C., Mourad, N.I. and Nenquin, M. (2012) Disruption and Stabilization of β-Cell Actin Microfilaments Differently Influence Insulin Secretion Triggered by Intracellular Ca2+ Mobilization or Store-Operated Ca2+ Entry. FEBS Letters, 586, 89-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rondas, D., Tomas, A. and Halban, P.A. (2011) Focal Adhesion Remodeling Is Crucial for Glucose-Stimulated Insulin Secretion and Involves Activation of Focal Adhesion Kinase and Paxillin. Diabetes, 60, 1146-1157. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Rondas, D., Tomas, A., Soto-Ribeiro, M., et al. (2012) Novel Mechanistic Link between Focal Adhesion Remodeling and Glucose-Stimulated Insulin Secretion. Journal of Biological Chemistry, 287, 2423-2436. [Google Scholar] [CrossRef]
|
|
[17]
|
Rogstam, A., Linse, S., Lindqvist, A., et al. (2007) Binding of Cal-cium Ions and SNAP-25 to the Hexa EF-Hand Protein Secretagogin. Biochemical Journal, 401, 353-363. [Google Scholar] [CrossRef]
|
|
[18]
|
Chen, Y.A. and Scheller, R.H. (2001) SNARE-Mediated Membrane Fu-sion. Nature Reviews Molecular Cell Biology, 2, 98-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Poirier, M.A., Xiao, W., Macosko, J.C., et al. (1998) The Synaptic SNARE Complex Is a Parallel Four-Stranded Helical Bundle. Na-ture Structural Biology, 5, 765-769. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sutton, R.B., Fasshauer, D., Jahn, R., et al. (1998) Crystal Structure of a SNARE Complex Involved in Synaptic Exocytosis at 2.4 Å Resolution. Nature, 395, 347-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Qin, J., Liu, Q., Liu, Z., et al. (2020) Structural and Mechanistic In-sights into Secretagogin-Mediated Exocytosis. Proceedings of the National Academy of Sciences, 117, 6559-6570. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Müller, T.D., Finan, B., Bloom, S.R., et al. (2019) Glucagon-Like Peptide 1 (GLP-1). Molecular Metabolism, 30, 72-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Biancolin, A.D., Jeong, H., Mak, K.W.Y., et al. (2022) Dis-rupted and Elevated Circadian Secretion of Glucagon-Like Peptide-1 in a Murine Model of type 2 Diabetes. Endocrinol-ogy, 163, bqac118. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Hansson, S.F., Zhou, A.X., Vachet, P., et al. (2018) Secretagogin Is Increased in Plasma from Type 2 Diabetes Patients and Potentially Reflects Stress and Islet Dys-function. PLOS ONE, 13, e0196601. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
杨靖, 赵志波, 吴丽, 项孙敏, 李骄阳, 颜斌, 肖新华. 胰岛素强化治疗对新发2型糖尿病非肥胖患者血浆促泌素的影响[J]. 实用医学杂志, 2019, 35(8): 1288-1291.
|
|
[26]
|
Yang, C., Qu, H., Zhao, X., et al. (2021) Plasma Secretagogin Is Increased in Individuals with Glucose Dysregulation. Experimental and Clinical Endocrinology & Diabetes, 129, 661-665. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Deischinger, C., Harreiter, J., Leitner, K., et al. (2020) Secretagogin Is Related to Insulin Secretion but Unrelated to Gestational Diabetes Mellitus Status in Pregnancy. Journal of Clinical Med-icine, 9, 2277. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xu, Y., Toomre, D.K., Bogan, J.S., et al. (2017) Excess Cholesterol In-hibits Glucose-Stimulated Fusion Pore Dynamics in Insulin Exocytosis. Journal of Cellular and Molecular Medicine, 21, 2950-2962. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bogan, J.S., Xu, Y. and Hao, M. (2012) Cholesterol Accumulation In-creases Insulin Granule Size and Impairs Membrane Trafficking. Traffic, 13, 1466-1480. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kong, F.J., Wu, J.H., Sun, S.Y., et al. (2017) The Endo-plasmic Reticulum Stress/Autophagy Pathway Is Involved in Cholesterol-Induced Pancreatic β-Cell Injury. Scientific Re-ports, 7, Article No. 44746. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Kataoka, H.U. and Noguchi, H. (2013) ER Stress and β-Cell Pathogenesis of Type 1 and Type 2 Diabetes and Islet Transplantation. Cell Medicine, 5, 53-57. [Google Scholar] [CrossRef]
|
|
[32]
|
Yang, J., Lv, Y., Zhao, Z., et al. (2019) A mi-croRNA-24-to-Secretagogin Regulatory Pathway Mediates Cholesterol-Induced Inhibition of Insulin Secretion. Interna-tional Journal of Molecular Medicine, 44, 608-616. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hasegawa, K., Wakino, S., Kimoto, M., et al. (2013) The Hydrolase DDAH2 Enhances Pancreatic Insulin Secretion by Transcriptional Regulation of Secretagogin through a Sirt1-Dependent Mechanism in Mice. The FASEB Journal, 27, 2301-2315. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Malenczyk, K., Girach, F., Szodorai, E., et al. (2017) A TRPV 1-to-Secretagogin Regulatory Axis Controls Pancreatic β-Cell Survival by Modulating Protein Turnover. The EMBO Journal, 36, 2107-2125. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sharma, A.K., Khandelwal, R., Kumar, M.J.M., et al. (2019) Se-cretagogin Regulates Insulin Signaling by Direct Insulin Binding. Iscience, 21, 736-753. [Google Scholar] [CrossRef] [PubMed]
|