|
[1]
|
Pihlstrom, B.L., Michalowicz, B.S. and Johnson, N.W. (2005) Periodontal Diseases. Lancet (London, England), 366, 1809-1820. [Google Scholar] [CrossRef]
|
|
[2]
|
Michalowicz, B.S., Diehl, S.R., Gunsolley, J.C., Sparks, B.S., Brooks, C.N., Koertge, T.E., Califano, J.V., Burmeister, J.A. and Schenkein, H.A. (2000) Evidence of a Substantial Genetic Basis for Risk of Adult Periodontitis. Journal of Periodontology, 71, 1699-1707. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Scannapieco, F.A., Bush, R.B. and Paju, S. (2003) Associations between Periodontal Disease and Risk for Atherosclerosis, Cardiovascular Disease, and Stroke. A Systematic Review. Annals of Periodontology, 8, 38-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Soskolne, W.A. and Klinger, A. (2001) The Relationship between Periodontal Diseases and Diabetes: An Overview. Annals of Periodontology, 6, 91-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wen, S., Beltrán, V., Chaparro, A., Espinoza, F. and Riedemann, J.P. (2019) La periodontitis crónicamodifica la morbilidad de la artritisreumatoide: Aspectosclínicos y moleculares. Una revisiónsistemática [Association between Chronic Periodontitis and Rheumatoid Arthritis. A Systematic Review]. Revista Medica de Chile, 147, 762-775. [Google Scholar] [CrossRef]
|
|
[6]
|
Tomokiyo, A., Wada, N. and Maeda, H. (2019) Perio-dontal Ligament Stem Cells: Regenerative Potency in Periodontium. Stem Cells and Development, 28, 974-985. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Narayanan, A.S. and Bartold, P.M. (1996) Biochemistry of Periodontal Connective Tissues and Their Regeneration: A Current Perspective. Connective Tissue Research, 34, 191-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Han, J., Menicanin, D., Gronthos, S. and Bartold, P.M. (2014) Stem Cells, Tissue Engineering and Periodontal Regeneration. Australian Dental Journal, 59, 117-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Friedenstein, A.J., Gorskaja, J.F. and Kulagina, N.N. (1976) Fibroblast Precursors in Normal and Irradiated Mouse Hematopoietic Organs. Experimental Hematology, 4, 267-274.
|
|
[10]
|
Gay, I.C., Chen, S. and MacDougall, M. (2007) Isolation and Characterization of Multipotent Human Periodontal Ligament Stem Cells. Orthodontics & Craniofacial Research, 10, 149-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Giannobile, W.V., Finkelman, R.D. and Lynch, S.E. (1994) Comparison of Canine and Non-Human Primate Animal Models for Periodontal Regenerative Therapy: Results Follow-ing a Single Administration of PDGF/IGF-I. Journal of Periodontology, 65, 1158-1168. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gojo, S., Gojo, N., Takeda, Y., Mori, T., Abe, H., Kyo, S., Hata, J. and Umezawa, A. (2003) In Vivo Cardiovasculogenesis by Direct Injection of Isolated Adult Mesenchymal Stem Cells. Experimental Cell Research, 288, 51-59. [Google Scholar] [CrossRef]
|
|
[13]
|
Gronthos, S., Mankani, M., Brahim, J., Robey, P.G. and Shi, S. (2000) Postnatal Human Dental Pulp Stem Cells (DPSCs) in Vitro and in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 13625-13630. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L.W., Robey, P.G. and Shi, S. (2003) SHED: Stem Cells from Human Exfo-liated Deciduous Teeth. Proceedings of the National Academy of Sciences of the United States of America, 100, 5807-5812. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Seo, B.M., Miura, M., Gronthos, S., Bartold, P.M., Batouli, S., Brahim, J., Young, M., Robey, P.G., Wang, C.Y. and Shi, S. (2004) Investigation of Multipotent Postnatal Stem Cells from Human Periodontal Ligament. Lancet (London, England), 364, 149-155. [Google Scholar] [CrossRef]
|
|
[16]
|
Sonoyama, W., Liu, Y., Yamaza, T., Tuan, R.S., Wang, S., Shi, S. and Huang, G.T. (2008) Characterization of the Apical Papilla and Its Residing Stem Cells from Human Immature Permanent Teeth: A Pilot Study. Journal of Endodontics, 34, 166-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Morsczeck, C., Götz, W., Schierholz, J., Zeilhofer, F., Kühn, U., Möhl, C., Sippel, C. and Hoffmann, K.H. (2005) Isolation of Precursor Cells (PCs) from Human Dental Follicle of Wisdom Teeth. Matrix Biology: Journal of the International Society for Matrix Biology, 24, 155-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, Q.Z., Nguyen, A.L., Yu, W.H. and Le, A.D. (2012) Human Oral Mucosa and Gingiva: A Unique Reservoir for Mesenchymal Stem Cells. Journal of Dental Research, 91, 1011-1018. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sonoyama, W., Liu, Y., Fang, D., Yamaza, T., Seo, B.M., Zhang, C., Liu, H., Gronthos, S., Wang, C.Y., Wang, S. and Shi, S. (2006) Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine. PLOS ONE, 1, e79. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tomar, G.B., Srivastava, R.K., Gupta, N., Barhanpurkar, A.P., Pote, S.T., Jhaveri, H.M., Mishra, G.C. and Wani, M.R. (2010) Human Gingiva-Derived Mesenchymal Stem Cells Are Superior to Bone Marrow-Derived Mesenchymal Stem Cells for Cell Therapy in Regenerative Medicine. Biochemical and Biophysical Research Communications, 393, 377-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Rosales, C. (2020) Neutrophils at the Crossroads of Innate and Adaptive Immunity. Journal of Leukocyte Biology, 108, 377-396. [Google Scholar] [CrossRef]
|
|
[22]
|
Kim, D., Lee, A.E., Xu, Q., Zhang, Q. and Le, A.D. (2021) Gingiva-Derived Mesenchymal Stem Cells: Potential Application in Tissue Engineering and Regenerative Medicine—A Comprehensive Review. Frontiers in Immunology, 12, Article ID: 667221. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Xu, Q.C., Wang, Z.G., Ji, Q.X., Yu, X.B., Xu, X.Y., Yuan, C.Q., Deng, J. and Yang, P.S. (2014) Systemically Transplanted Human Gingiva-Derived Mesenchymal Stem Cells Contrib-uting to Bone Tissue Regeneration. International Journal of Clinical and Experimental Pathology, 7, 4922-4929.
|
|
[24]
|
Ferro, F., Spelat, R. and Baheney, C.S. (2014) Dental Pulp Stem Cell (DPSC) Isolation, Characteriza-tion, and Differentiation. Methods in Molecular Biology (Clifton, N.J.), 1210, 91-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yang, H., Gao, L.N., An, Y., Hu, C.H., Jin, F., Zhou, J., Jin, Y. and Chen, F.M. (2013) Comparison of Mesenchymal Stem Cells Derived from Gingival Tissue and Periodontal Liga-ment in Different Incubation Conditions. Biomaterials, 34, 7033-7047. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D.J. and Horwitz, E. (2006) Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy, 8, 315-317. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, Q., Shi, S., Liu, Y., Uyanne, J., Shi, Y., Shi, S. and Le, A.D. (2009) Mesenchymal Stem Cells Derived from Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis. Journal of Immunology (Baltimore, Md.: 1950), 183, 7787-7798. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Gao, Y., Zhao, G., Li, D., Chen, X., Pang, J. and Ke, J. (2014) Isolation and Multiple Differentiation Potential Assessment of Human Gingival Mesenchymal Stem Cells. International Journal of Molecular Sciences, 15, 20982-20996. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, D., Zou, X.Y., El-Ayachi, I., Romero, L.O., Yu, Z., Iglesi-as-Linares, A., Cordero-Morales, J.F. and Huang, G.T. (2019) Human Dental Pulp Stem Cells and Gingival Mesenchy-mal Stem Cells Display Action Potential Capacity in Vitro after Neuronogenic Differentiation. Stem Cell Reviews and Reports, 15, 67-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
MuruganGirija, D., Kalachaveedu, M., Ranga Rao, S. and Sub-barayan, R. (2018) Transdifferentiation of Human Gingival Mesenchymal Stem Cells into Functional Keratinocytes by Acalypha indica in Three-Dimensional Microenvironment. Journal of Cellular Physiology, 233, 8450-8457. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Treves-Manusevitz, S., Hoz, L., Rachima, H., Montoya, G., Tzur, E., Var-dimon, A., Narayanan, A.S., Amar, S., Arzate, H. and Pitaru, S. (2013) Stem Cells of the Lamina Propria of Human Oral Mucosa and Gingiva Develop into Mineralized Tissues in Vivo. Journal of Clinical Periodontology, 40, 73-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Eleuterio, E., Trubiani, O., Sulpizio, M., Di Giuseppe, F., Pierdomenico, L., Marchisio, M., Giancola, R., Giammaria, G., Miscia, S., Caputi, S., Di Ilio, C. and Angelucci, S. (2013) Proteome of Human Stem Cells from Periodontal Ligament and Dental Pulp. PLOS ONE, 8, e71101. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhang, J., An, Y., Gao, L.N., Zhang, Y.J., Jin, Y. and Chen, F.M. (2012) The Effect of Aging on the Pluripotential Capacity and Regenerative Potential of Human Periodontal Liga-ment Stem Cells. Biomaterials, 33, 6974-6986. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Monnouchi, S., Maeda, H., Yuda, A., Hamano, S., Wada, N., Tomokiyo, A., Koori, K., Sugii, H., Serita, S. and Akamine, A. (2015) Mechanical Induction of Interleukin-11 Regu-lates Osteoblastic/Cementoblastic Differentiation of Human Periodontal Ligament Stem/Progenitor Cells. Journal of Per-iodontal Research, 50, 231-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
He, Y., Jian, C.X., Zhang, H.Y., Zhou, Y., Wu, X., Zhang, G. and Tan, Y.H. (2016) Hypoxia Enhances Periodontal Ligament Stem Cell Proliferation via the MAPK Signaling Pathway. Genetics and Molecular Research: GMR, 15, gmr15048965. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, T., Kang, W., Du, L. and Ge, S. (2017) Rho-Kinase Inhibitor Y-27632 Facilitates the Proliferation, Migration and Pluripotency of Human Periodontal Ligament Stem Cells. Journal of Cellular and Molecular Medicine, 21, 3100-3112. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kadar, K., Kiraly, M., Porcsalmy, B., Molnar, B., Racz, G.Z., Blazsek, J., Kallo, K., Szabo, E.L., Gera, I., Gerber, G. and Varga, G. (2009) Differentiation Potential of Stem Cells from Human Dental Origin-Promise for Tissue Engineering. Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society, 60, 167-175.
|
|
[38]
|
Abedian, Z., Jenabian, N., Moghadamnia, A.A., Zabihi, E., Pourbagher, R., Hossein-Nataj, H. and Mohamadnia-Afrouzi, M. (2020) A Comparative Study on Immunophenotypic Characteriza-tion and Osteogenic Differentiation of Human Mesenchymal Stromal Cells Derived from Periodontal Ligament and Gin-giva. Journal of Periodontology, 91, 1194-1202. [Google Scholar] [CrossRef]
|
|
[39]
|
Xing, Y., Zhang, Y., Wu, X., Zhao, B., Ji, Y. and Xu, X. (2019) A Comprehensive Study on Donor-Matched Comparisons of Three Types of Mesenchymal Stem Cells-Containing Cells from Human Dental Tissue. Journal of Periodontal Research, 54, 286-299. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ranganathan, K. and Lakshminarayanan, V. (2012) Stem Cells of the Dental Pulp. Indian Journal of Dental Research: Official Publication of Indian Society for Dental Research, 23, 558. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kotova, A.V., Lobov, A.A., Dombrovskaya, J.A., Sannikova, V.Y., Ryumina, N.A., Klausen, P., Shavarda, A.L., Malashicheva, A.B. and Enukashvily, N.I. (2021) Comparative Analysis of Dental Pulp and Periodontal Stem Cells: Differences in Morphology, Functionality, Osteogenic Differentia-tion and Proteome. Biomedicines, 9, 1606. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Gronthos, S., Brahim, J., Li, W., Fisher, L.W., Cherman, N., Boyde, A., DenBesten, P., Robey, P.G. and Shi, S. (2002) Stem Cell Properties of Human Dental Pulp Stem Cells. Journal of Dental Research, 81, 531-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Cordeiro, M.M., Dong, Z., Kaneko, T., Zhang, Z., Miyazawa, M., Shi, S., Smith, A.J. and Nör, J.E. (2008) Dental Pulp Tissue Engineering with Stem Cells from Exfoliated Deciduous Teeth. Journal of Endodontics, 34, 962-969. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Laino, G., d’Aquino, R., Graziano, A., Lanza, V., Carinci, F., Naro, F., Pirozzi, G. and Papaccio, G. (2005) A New Population of Human Adult Dental Pulp Stem Cells: A Useful Source of Living Autologous Fibrous Bone Tissue (LAB). Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 20, 1394-1402. [Google Scholar] [CrossRef]
|
|
[45]
|
Papaccio, G., Graziano, A., d’Aquino, R., Graziano, M.F., Pirozzi, G., Menditti, D., De Rosa, A., Carinci, F. and Laino, G. (2006) Long-Term Cryopreservation of Dental Pulp Stem Cells (SBP-DPSCs) and Their Differentiated Osteoblasts: A Cell Source for Tissue Repair. Journal of Cellular Physiology, 208, 319-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Otaki, S., Ueshima, S., Shiraishi, K., Sugiyama, K., Hamada, S., Yorimoto, M. and Matsuo, O. (2007) Mesenchymal Progenitor Cells in Adult Human Dental Pulp and Their Ability to Form Bone When Transplanted into Immunocompromised Mice. Cell Biology International, 31, 1191-1197. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Stevens, A., Zuliani, T., Olejnik, C., LeRoy, H., Obriot, H., Kerr-Conte, J., Formstecher, P., Bailliez, Y. and Polakowska, R.R. (2008) Human Dental Pulp Stem Cells Differentiate into Neural Crest-Derived Melanocytes and Have label-Retaining and Sphere-Forming Abilities. Stem Cells and Devel-opment, 17, 1175-1184. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhang, C., Chang, J., Sonoyama, W., Shi, S. and Wang, C.Y. (2008) Inhibition of Human Dental Pulp Stem Cell Differentiation by Notch Signaling. Journal of Dental Research, 87, 250-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Zhang, Q.Z., Su, W.R., Shi, S.H., Wilder-Smith, P., Xiang, A.P., Wong, A., Nguyen, A.L., Kwon, C.W. and Le, A.D. (2010) Human Gingiva-Derived Mesenchymal Stem Cells Elicit Polarization of m2 Macrophages and Enhance Cutaneous Wound Healing. Stem Cells (Dayton, Ohio), 28, 1856-1868. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Su, W.R., Zhang, Q.Z., Shi, S.H., Nguyen, A.L. and Le, A.D. (2011) Human Gingiva-Derived Mesenchymal Stromal Cells Attenuate Contact Hypersensitivity via Prostaglandin E2-Dependent Mechanisms. Stem Cells (Dayton, Ohio), 29, 1849-1860. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wu, W., Xiao, Z.X., Zeng, D., Huang, F., Wang, J., Liu, Y., Bellanti, J.A., Olsen, N. and Zheng, S.G. (2020) B7-H1 Pro-motes the Functional Effect of Human Gingiva-Derived Mesenchymal Stem Cells on Collagen-Induced Arthritis Murine Model. Molecular Therapy: The Journal of the American Society of Gene Therapy, 28, 2417-2429. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Dang, J., Xu, Z., Xu, A., Liu, Y., Fu, Q., Wang, J., Huang, F., Zheng, Y., Qi, G., Sun, B., Bellanti, J.A., Kandalam, U., Emam, H.A., Jarjour, W. and Zheng, S.G. (2020) Human Gin-giva-Derived Mesenchymal Stem Cells Are Therapeutic in Lupus Nephritis through Targeting of CD39-CD73 Signaling Pathway. Journal of Autoimmunity, 113, Article ID: 102491. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Tang, L., Li, N., Xie, H. and Jin, Y. (2011) Characterization of Mesenchymal Stem Cells from Human Normal and Hyperplas-tic Gingiva. Journal of Cellular Physiology, 226, 832-842. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Wada, N., Menicanin, D., Shi, S., Bartold, P.M. and Gronthos, S. (2009) Immunomodulatory Properties of Human Periodontal Ligament Stem Cells. Journal of Cellular Physiology, 219, 667-676. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Hossein-Khannazer, N., Hashemi, S.M., Namaki, S., Ghanbarian, H., Sattari, M. and Khojasteh, A. (2019) Study of the Immunomodulatory Effects of Osteogenic Differentiated Human Dental Pulp Stem Cells. Life Sciences, 216, 111-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Zhang, X., Huang, F., Li, W., Dang, J.L., Yuan, J., Wang, J., Zeng, D.L., Sun, C.X., Liu, Y.Y., Ao, Q., Tan, H., Su, W., Qian, X., Olsen, N. and Zheng, S.G. (2018) Human Gingi-va-Derived Mesenchymal Stem Cells Modulate Monocytes/Macrophages and Alleviate Atherosclerosis. Frontiers in Immunology, 9, 878. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Nakao, Y., Fukuda, T., Zhang, Q., Sanui, T., Shinjo, T., Kou, X., Chen, C., Liu, D., Watanabe, Y., Hayashi, C., Yamato, H., Yotsumoto, K., Tanaka, U., Taketomi, T., Uchiumi, T., Le, A.D., Shi, S. and Nishimura, F. (2021) Exosomes from TNF-α-Treated Human Gingiva-Derived MSCs Enhance M2 Macrophage Polarization and Inhibit Periodontal Bone Loss. Acta Biomaterialia, 122, 306-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zhang, Y., Wang, Z., Shi, B., Li, Y., Wang, R., Sun, J., Hu, Y., Yuan, C. and Xu, Q. (2021) Effect of Gingival Mesenchymal Stem Cell-Derived Exosomes on Inflammatory Macro-phages in a High-Lipid Microenvironment. International Immunopharmacology, 94, Article ID: 107455. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Wang, R., Ji, Q., Meng, C., Liu, H., Fan, C., Lipkind, S., Wang, Z. and Xu, Q. (2020) Role of Gingival Mesenchymal Stem Cell Exosomes in Macrophage Polarization under Inflamma-tory Conditions. International Immunopharmacology, 81, Article ID: 106030. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Górski, B. (2016) Gingiva as a New and the Most Accessible Source of Mesenchymal Stem Cells from the Oral Cavity to Be Used in Regenerative Therapies. Postępy Higieny Medycyny Doświadczalnej (Online), 70, 858-871. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Queiroz, A., Albuquerque-Souza, E., Gasparoni, L.M., de França, B.N., Pelissari, C., Trierveiler, M. and Holzhausen, M. (2021) Therapeutic Potential of Periodontal Ligament Stem Cells. World Journal of Stem Cells, 13, 605-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Zhuang, Y., Lin, K. and Yu, H. (2019) Advance of Nano-Composite Electrospun Fibers in Periodontal Regeneration. Frontiers in Chemistry, 7, 495. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Wei, Y., Wang, Z., Han, J., Jiang, X., Lei, L., Yang, X., Sun, W., Gou, Z. and Chen, L. (2022) Modularized Bioceramic Scaffold/Hydrogel Membrane Hierarchical Architecture Beneficial for Periodontal Tissue Regeneration in Dogs. Biomaterials Research, 26, 68. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Dubey, N., Ferreira, J.A., Daghrery, A., Aytac, Z., Malda, J., Bhaduri, S.B. and Bottino, M.C. (2020) Highly Tunable Bioactive Fiber-Reinforced Hydrogel for Guided Bone Regen-eration. Acta Biomaterialia, 113, 164-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Ammar, M.M., Waly, G.H., Saniour, S.H. and Moussa, T.A. (2018) Growth Factor Release and Enhanced Encapsulated Periodontal Stem Cells Viability by Freeze-Dried Platelet Concentrate Loaded Thermo-Sensitive Hydrogel for Periodontal Regeneration. The Saudi Dental Journal, 30, 355-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
He, X.T., Li, X., Xia, Y., Yin, Y., Wu, R.X., Sun, H.H. and Chen, F.M. (2019) Building Capacity for Macrophage Modulation and Stem Cell Recruitment in High-Stiffness Hydro-gels for Complex Periodontal Regeneration: Experimental Studies in Vitro and in Rats. Acta Biomaterialia, 88, 162-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Liu, X., Wang, Z., Song, W., Sun, W., Hong, R., Pothukuchi, A. and Xu, Q. (2020) Systematically Transplanted Human Gingiva-Derived Mesenchymal Stem Cells Regulate Lipid Me-tabolism and Inflammation in Hyperlipidemic Mice with Periodontitis. Experimental and Therapeutic Medicine, 19, 672-682. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Sun, W., Wang, Z., Xu, Q., Sun, H., Liu, X., Yang, J. and Hong, R. (2019) The Treatment of Systematically Transplanted Gingival Mesenchymal Stem Cells in Periodontitis in Mice. Experimental and Therapeutic Medicine, 17, 2199-2205. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Yu, X., Ge, S., Chen, S., Xu, Q., Zhang, J., Guo, H. and Yang, P. (2013) Human Gingiva-Derived Mesenchymal Stromal Cells Contribute to Periodontal Regeneration in Beagle Dogs. Cells, Tissues, Organs, 198, 428-437. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Fawzy El-Sayed, K.M., Mekhemar, M.K., Beck-Broichsitter, B.E., Bähr, T., Hegab, M., Receveur, J., Heneweer, C., Becker, S.T., Wiltfang, J. and Dörfer, C.E. (2015) Periodontal Regeneration Employing Gingival Margin-Derived Stem/Progenitor Cells in Conjunction with IL-1ra-Hydrogel Synthetic Extracellular Matrix. Journal of Clinical Periodontology, 42, 448-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Qiu, J., Wang, X., Zhou, H., Zhang, C., Wang, Y., Huang, J., Liu, M., Yang, P. and Song, A. (2020) Enhancement of Periodontal Tissue Regeneration by Conditioned Media from Gingiva-Derived or Periodontal Ligament-Derived Mesenchymal Stem Cells: A Comparative Study in Rats. Stem Cell Research & Therapy, 11, 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Park, J.C., Kim, J.M., Jung, I.H., Kim, J.C., Choi, S.H., Cho, K.S. and Kim, C.S. (2011) Isolation and Characterization of Human Periodontal Ligament (PDL) Stem Cells (PDLSCs) from the Inflamed PDL Tissue: In Vitro and In Vivo Evaluations. Journal of Clinical Periodontology, 38, 721-731. [Google Scholar] [CrossRef]
|
|
[73]
|
Doğan, A., Ozdemir, A., Kubar, A. and Oygür, T. (2003) Healing of Artificial Fenestration Defects by Seeding of Fibroblast-Like Cells Derived from Regenerated Periodontal Ligament in a Dog: A Preliminary Study. Tissue Engineering, 9, 1189-1196. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Roato, I., Masante, B., Putame, G., Massai, D. and Mussano, F. (2022) Challenges of Periodontal Tissue Engineering: Increasing Biomimicry through 3D Printing and Controlled Dy-namic Environment. Nanomaterials (Basel, Switzerland), 12, 3878. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Petridis, X., Diamanti, E., Trigas, G., Kalyvas, D. and Kitraki, E. (2015) Bone Regeneration in Critical-Size Calvarial Defects Using Human Dental Pulp Cells in an Extracellular Matrix-Based Scaffold. Journal of Cranio-mAxillo-Facial Surgery: Official Publication of the European Association for Cra-nio-Maxillo-Facial Surgery, 43, 483-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Yang, X., Yang, F., Walboomers, X.F., Bian, Z., Fan, M. and Jansen, J.A. (2010) The Performance of Dental Pulp Stem Cells on Nanofibrous PCL/Gelatin/nHA Scaffolds. Journal of Biomedical Materials Research. Part A, 93, 247-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Shen, Z., Kuang, S., Zhang, Y., Yang, M., Qin, W., Shi, X. and Lin, Z. (2020) Chitosan Hydrogel Incorporated with Dental Pulp Stem Cell-Derived Exosomes Alleviates Periodontitis in Mice via a Macrophage-Dependent Mechanism. Bioactive Materials, 5, 1113-1126. [Google Scholar] [CrossRef] [PubMed]
|