|
[1]
|
Guo, N., Huo, W.J., Dong, X.Y., Sun, Z.F., Lu, Y.T., Wu, X.W., Dai, L., Wang, L., Lin, H.C., Liu, H.D., Liang, H.F., He, Z.X. and Zhang, Q.B. (2022) A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods, 6, Article ID: 2200597. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zheng, S.H., Zhao, W.Y., Chen, J.P., Zhao, X.L., Pan, Z.H., Yang, X.W. and Yang, X.W. (2023) 2D Materials Boost Advanced Zn Anodes: Principles, Advances and Challenges. Nano-Micro letters, 15, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Yang, J.J., Zhao, R., Wang, Y.S., Hu, Z.F., Wang, Y.H., Zhang, A.Q., Wu, C. and Bai, Y. (2023) Insights on Artificial Interphases of Zn and Electrolyte: Protection Mechanisms, Constructing Techniques, Applicability and Prospective. Advanced Functional Materials, 33, Article ID: 2213510. [Google Scholar] [CrossRef]
|
|
[4]
|
Li, H.F., Ma, L.T., Han, C.P., Wang, Z.F., Liu, Z.X., Tang, Z.J. and Zhi, C.Y. (2019) Advanced Rechargeable Zinc-Based BATTERIES: Recent progress and Future Perspectives. Nano Energy, 62, 500-587. [Google Scholar] [CrossRef]
|
|
[5]
|
Parker, J.F., Chervin, C.N., Pala, I.R., Machler, M., Burz, M.F., Long, J.W. and Rolison, D.R. (2017) Rechargeable Nickel-3D Zinc Batteries: An Energy-Dense, Safer Alternative to Lithium-Ion. Science, 356, 415-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, Z., Huang, J.H., Guo, Z.W., Dong, X.L., Liu, Y., Wang, Y.G. and Xia, Y.Y. (2019) A Metal-Organic Framework Host for Highly Reversible Dendrite-Free Zinc Metal Anodes. Joule, 3, 1289-1300. [Google Scholar] [CrossRef]
|
|
[7]
|
Zhang, G.H., Zhang, X.N., Liu, H.Z., Li, J.H., Chen, Y.Q. and Duan, H.G. (2021) 3D-Printed Multi-Channel Metal Lattices Enabling Localized Electric-Field Redistribution for Dendrite-Free Aqueous Zn Ion Batteries. Advanced Energy Materials, 11, Article ID: 2003927. [Google Scholar] [CrossRef]
|
|
[8]
|
Chao, D.L., Zhu, C.R.R., Song, M., Liang, P., Zhang, X., Tiep, N.H., Zhao, H.F., Wang, J., Wang, R.M., Zhang, H. and Fan, H.J. (2018) A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials, 30, Article ID: 1803181. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Guo, W.B., Cong, Z.F., Guo, Z.H., Chang, C.Y., Liang, X.Q., Liu, Y.D., Hu, W.G. and Pu, X. (2020) Dendrite-Free Zn Anode with Dual Channel 3D Porous Frameworks for Rechargeable Zn Batteries. Energy Storage Materials, 30, 104-112. [Google Scholar] [CrossRef]
|
|
[10]
|
Gao, Y., Cao, Q.H., Pu, J., Zhao, X., Fu, G.W., Chen, J.P., Wang, Y.X. and Guan, C. (2022) Stable Zn Anodes with Triple Gradients. Advanced Materials, 35, Article ID: 2207573. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Su, S.Y., Xu, Y., Wang, Y., Wang, X.Y., Shi, L., Wu, D., Zou, P.C., Nairan, A., Lin, Z.Y., Kang, F.Y. and Yang, C. (2019) Holey Nickel Nanotube Reticular Network Scaffold for High-Performance Flexible Rechargeable Zn/MnO2 Batteries. Chemical Engineering Journal, 370, 330-336. [Google Scholar] [CrossRef]
|
|
[12]
|
Zhao, Q.W., Liu, W., Chen, Y.J. and Chen, L.B. (2022) Ultra-Stable Zn Metal Batteries with Dendrite-Free Cu-Sn Alloy Induced High-Quality Composite Zn Mesh. Chemical Engineering Journal, 450, Article ID: 137979. [Google Scholar] [CrossRef]
|
|
[13]
|
Zhang, Q., Luan, J.Y., Huang, X.B., Zhu, L., Tang, Y.G., Ji, X.B. and Wang, H.Y. (2020) Simultaneously Regulating the Ion Distribution and Electric Field to Achieve Dendrite-Free Zn Anode. Small Methods, 16, Article ID: 2000929. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, Y.F., Zhao, D.Y., Cheng, J.J., Lei, Y., Zhang, Z.S., Zhang, W.M. and Zhu, Q.C. (2022) A Bifunctional Nitrogen Doped Carbon Network as the Interlayer for Dendrite-Free Zn Anode. Chemical Engineering Journal, 452, Article ID: 139264. [Google Scholar] [CrossRef]
|
|
[15]
|
Zhou, Y.J., Xie, S.Y., Li, Y., Zheng, Z.Y. and Dong, L.B. (2023) Sieve-Like Interface Built by ZnO Porous Sheets towards Stable Zinc Anodes. Journal of Colloid and Interface Science, 630, 676-684. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liang, G.J., Zhu, J.X., Yan, B.X., Li, Q., Chen, A., Chen, Z., Wang, X.Q., Xiong, B., Fan, J. and Xu, J. (2022) Gradient Fluorinated Alloy to Enable Highly Reversible Zn-Metal Anode Chemistry. Energy & Environmental Science, 15, 1086-1096. [Google Scholar] [CrossRef]
|
|
[17]
|
Shen, Z.X., Luo, L., Li, C.W., Pu, J., Xie, J.P., Wang, L.T., Huai, Z., Dai, Z.Y., Yao, Y.G. and Hong, G. (2021) Stratified Zinc-Binding Strategy toward Prolonged Cycling and Flexibility of Aqueous Fibrous Zinc Metal Batteries. Advanced Energy Materials, 11, Article ID: 2100214. [Google Scholar] [CrossRef]
|
|
[18]
|
Zhong, Y.J., Cao, C.C., Tadé, M.O. and Shao, Z.P. (2022) Ionically and Electronically Conductive Phases in a Composite Anode for High-Rate and Stable Lithium Stripping and Plating for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 14, 38786-38794. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhong, Y.J., Xu, X.M., Veder, J.P. and Shao, Z.P. (2020) Self-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries. Iscience, 23, Article ID: 100943. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhong, Y.J., Xu, X.M., Liu, P.Y., Ran, R., Jiang, S.P., Wu, H.W. and Shao, Z.P. (2020) A Function-Separated Design of Electrode for Realizing High-Performance Hybrid Zinc Battery. Advanced Energy Materials, 10, Article ID: 2002992. [Google Scholar] [CrossRef]
|
|
[21]
|
Xie, S.Y., Li, Y. and Dong, L.B. (2023) Stable Anode-Free Zinc-ion Batteries Enabled by Alloy Network-Modulated Zinc Deposition Interface. Journal of Energy Chemistry, 76, 32-40. [Google Scholar] [CrossRef]
|
|
[22]
|
Jian, Q.P., Wan, Y.H., Sun, J., Wu, M.C. and Zhao, T.S. (2020) A Dendrite-Free Zinc Anode for Rechargeable Aqueous Batteries. Journal of Materials Chemistry A, 8, 20175-20184. [Google Scholar] [CrossRef]
|
|
[23]
|
Li, Y., Wu, L.S., Dong, C., Wang, X., Dong, Y.F., He, R.H. and Wu, Z.S. (2023) Manipulating Horizontal Zn Deposition with Graphene Interpenetrated Zn Hybrid Foils for Dendrite-Free Aqueous Zinc Ion Batteries. Energy & Environmental Science. [Google Scholar] [CrossRef]
|
|
[24]
|
Chen, G.Y., Sang, Z.Y., Cheng, J.H., Tan, S.D., Yi, Z.H., Zhang, X.Q., Si, W.P., Yin, Y.X., Liang, J. and Hou, F. (2022) Reversible and Homogenous Zinc Deposition Enabled by In-Situ Grown Cu Particles on Expanded Graphite for Dendrite-free and Flexible Zinc Metal Anodes. Energy Storage Materials, 50, 589-597. [Google Scholar] [CrossRef]
|
|
[25]
|
Li, C.P., Shi, X.D., Liang, S.Q., Ma, X.M., Han, M.M., Wu, X.W. and Zhou, J. (2019) Spatially Homogeneous Copper Foam as Surface Dendrite-Free Host for Zinc Metal Anode. Chemical Engineering Journal, 379, Article ID: 122248. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhu, X., Zhang, H.Y., Wang, Z., Zhang, C.W., Qin, L.G., Chen, D.M., Sun, S.Q., Liu, C.F. and Chen, J. (2021) A Self-Optimized Dual Zinc/Copper-Electrolyte Anodic Interfaces by Mechanical Rolling toward Zinc Ion Batteries with High Capacity and Long Cycle Life. Materials Today Energy, 23, Article ID: 100897. [Google Scholar] [CrossRef]
|
|
[27]
|
Shi, X.D., Xu, G.F., Liang, S.Q., Li, C.P., Guo, S., Xie, X.S., Ma, X.M. and Zhou, J. (2019) Homogeneous Deposition of Zinc on Three-Dimensional Porous Copper Foam as a Superior Zinc Metal Anode. ACS Sustainable Chemistry & Engineering, 7, 17737-17746. [Google Scholar] [CrossRef]
|
|
[28]
|
Zeng, Y.X., Sun, P.X., Pei, Z.H., Jin, Q., Zhang, X.T., Yu, L. and Lou, X.W. (2022) Nitrogen-Doped Carbon Fibers Embedded with Zincophilic Cu Nanoboxes for Stable Zn-Metal Anodes. Advanced Materials, 34, Article ID: 2200342. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yang, S.N., Li, Y.T., Du, H.X., Liu, Y.Q., Xiang, Y.H., Xiong, L.Z., Wu, X.M. and Wu, X.W. (2022) Copper Nanoparticle-Modified Carbon Nanofiber for Seeded Zinc Deposition Enables Stable Zn Metal Anode. ACS Sustainable Chemistry & Engineering, 10, 12630-12641. [Google Scholar] [CrossRef]
|
|
[30]
|
Yang, J.L., Yang, P.H., Yan, W.Q., Zhao, J.W. and Fan, H.J. (2022) 3D Zincophilic Micro-Scaffold Enables Stable Zn Deposition. Energy Storage Materials, 51, 259-265. [Google Scholar] [CrossRef]
|
|
[31]
|
Zheng, S.J., Zhu, X.B., Ouyang, Y., Chen, K., Chen, A.L., Fan, X.S., Miao, Y.E., Liu, T.X. and Xie, Y. (2022) Metal-Organic Framework Decorated Polymer Nanofiber Composite Separator for Physiochemically Shielding Polysulfides in Stable Lithium-Sulfur Batteries. Energy & Fuels, 35, 19154-19163. [Google Scholar] [CrossRef]
|
|
[32]
|
Kumar, S., Yoon, H., Park, H., Park, G., Suh, S. and Kim, H.J. (2022) A Dendrite-Free Anode for Stable Aqueous Rechargeable Zinc-Ion Batteries. Journal of Industrial and Engineering Chemistry, 108, 321-327. [Google Scholar] [CrossRef]
|
|
[33]
|
Baek, S.H., Cho, Y.J., Park, J.M., Xiong, P.X., Yeon, J.S., Rana, H.H., Park, J.H., Jang, G., Lee, S.J. and Park, H.S. (2022) Electrospun Conductive Carbon Nanofiber Hosts for Stable Zinc Metal Anode. International Journal of Energy Research, 46, 7201-7214. [Google Scholar] [CrossRef]
|
|
[34]
|
Nie, Y., Wang, F., Zhang, H., Wei, D.H., Zhong, S.Y., Wang, L., Zhang, G.H., Duan, H.G. and Cao, R. (2020) Tunable Confinement of Cu-Zn Bimetallic Oxides in Carbon Nanofiber Networks by Thermal Diffusion for Lithium-Ion Battery. Applied Surface Science, 517, Article ID: 146079. [Google Scholar] [CrossRef]
|
|
[35]
|
Zhang, Z.J., Yang, X., Li, P., Wang, Y., Zhao, X., Safaei, J., Tian, H., Zhou, D., Li, B.H., Kang, F.Y. and Wang, G.X. (2022) Biomimetic Dendrite-Free Multivalent Metal Batteries. Advanced Materials, 34, Article ID: 2206970. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Meng, H., Ran, Q., Dai, T.Y., Shi, H., Zeng, S.P., Zhu, Y.F., Wen, Z., Zhang, W., Lang, X.Y. and Zheng, W.T. (2022) Surface‑Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High‑Performance Aqueous Zinc‑Ion Battery. Nano-Micro Letters, 14, Article No. 128. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zeng, X., Qian, S.Y., Zhou, J.Q., Hao, B.J., Zhang, L.F., Zhou, Y., Shi, Y., Zhu, C.H., Zhou, X., Lin, J., Cheng, Y., Yan, C.L. and Qian, T. (2023) Sustained-Compensated Interfacial Zincophilic Sites to Assist High-Capacity Aqueous Zn Metal Batteries. Nano Letters, 23, 1135-1143. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Li, Y., Peng, X.Y., Li, X., Duan, H., Xie, S.Y., Dong, L.B. and Kang, F.Y. (2023) Functional Ultrathin Separators Proactively Stabilizing Zinc Anodes for Zinc-Based Energy Storage. Advanced Materials, Article ID: 2300019. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhang, X.N., Yang, S.C., Huang, Z., Zeng, Z., Zhang, Y. and Wang, Z.H. (2022) Recyclable Nanopaper Separators with Uniform Sub-20nm Nanopores for High-Power and High-Capacity Zinc Metal Anodes. Electrochimica Acta, 430, Article ID: 141081. [Google Scholar] [CrossRef]
|
|
[40]
|
Yang, X.P., Wu, W.L., Liu, Y.Z., Lin, Z.R. and Sun, X.Q. (2022) Chitosan Modified Filter Paper Separators with Specific ion Adsorption to Inhibit Side Reactions and Induce Uniform Zn Deposition for Aqueous Zn Batteries. Chemical Engineering Journal, 450, Article ID: 137902. [Google Scholar] [CrossRef]
|
|
[41]
|
Li, L.B., Peng, J.X., Jia, X.F., Zhu, X.J., Meng, B.C., Yang, K., Chu, D.W., Yang, N.X. and Yu, J. (2022) PBC@Cellulose-Filter Paper Separator Design with Efficient Ion Transport Properties toward Stabilized Zinc-Ion Battery. Electrochimica Acta, 430, Article ID: 141129. [Google Scholar] [CrossRef]
|
|
[42]
|
Cui, Y.F., Zhuang, Z.B., Xie, Z.L., Cao, R.F., Hao, Q., Zhang, N., Liu, W.Q., Zhu, Y.H. and Huang, G. (2022) High-Energy and Long-Lived Zn—MnO2 Battery Enabled by a Hydrophobic-Ion-Conducting Membrane. ACS Nano, 16, 20730-20738. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Guo, N., Huo, W.J., Dong, X.Y., Sun, Z.F., Lu, Y.T., Wu, X.W., Dai, L., Wang, L., Lin, H.C., Liu, H.D., Liang, H.F., He, Z.X. and Zhang, Q.B. (2022) A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods, 6, Article ID: 2200597. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Mao, C.W., Chang, Y.X., Zhao, X.T., Dong, X.Y., Geng, Y.F., Zhang, N., Dai, L., Wu, X.W., Wang, L. and He, Z.X. (2022) Functional Carbon Materials for High-Performance Zn Metal Anodes. Journal of Energy Chemistry, 75, 135-153. [Google Scholar] [CrossRef]
|